

Undergraduate Topics in

Computer Science

Series Editor

Ian Mackie

Dept of Infomatics, Univ of Sussex, Palaiseau CX, France

Undergraduate Topics in Computer Science (UTiCS) delivers

high-quality instructional content for undergraduates

studying in all areas of computing and information science.

From core foundational and theoretical material to final-year

topics and applications, UTiCS books take a fresh, concise,

and modern approach and are ideal for self-study or for a

one- or two-semester course. The texts are all authored by

established experts in their fields, reviewed by an

international advisory board, and contain numerous

examples and problems. Many include fully worked

solutions.

More information about this series at
http://​www.​springer.​

com/​series/​7592

http://www.springer.com/series/7592

Des Watson

A Practical Approach to

Compiler Construction

Des Watson

Department of Informatics, Sussex University, Brighton,
East Sussex, UK

ISSN 1863-7310 e-ISSN 2197-1781

Undergraduate Topics in Computer Science

ISBN 978-3-319-52787-1 e-ISBN 978-3-319-52789-5

DOI 10.1007/978-3-319-52789-5

Library of Congress Control Number: 2017932112

© Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by

the Publisher, whether the whole or part of the material is

concerned, specifically the rights of translation, reprinting,

reuse of illustrations, recitation, broadcasting, reproduction

on microfilms or in any other physical way, and transmission

or information storage and retrieval, electronic adaptation,

computer software, or by similar or dissimilar methodology

now known or hereafter developed.

The use of general descriptive names, registered names,

trademarks, service marks, etc. in this publication does not

imply, even in the absence of a specific statement, that

such names are exempt from the relevant protective laws

and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to

assume that the advice and information in this book are

believed to be true and accurate at the date of publication.

Neither the publisher nor the authors or the editors give a

warranty, express or implied, with respect to the material

contained herein or for any errors or omissions that may

have been made. The publisher remains neutral with regard

to jurisdictional claims in published maps and institutional

affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing

AG

The registered company address is: Gewerbestrasse 11,

6330 Cham, Switzerland

Preface

The study of programming languages and their

implementations is a central theme of computer science.

The design of a compiler—a program translating programs

written in a high-level language into semantically equivalent

programs in another language, typically machine code—is

influenced by many aspects of computer science. The

compiler allows us to program in high-level languages, and

it provides a layer of abstraction so that we do not have to

worry when programming about the complex details of the

underlying hardware.

The designer of any compiler obviously needs to know

the details of both the source language being translated and

the language being generated, usually some form of

machine code for the target machine. For non-trivial

languages, the compiler is itself a non-trivial program and

should really be designed by following a standard structure.

Describing this standard structure is one of the key aims of

this book.

The design of compilers is influenced by the

characteristics of formal language specifications, by

automata theory, by parsing algorithms, by processor

design, by data structure and algorithm design, by

operating system services, by the target machine

instruction set and other hardware features, by

implementation language characteristics and so on, as well

as by the needs of the compilers’ users. Coding a compiler

can be a daunting software task, but the process is greatly

simplified by making use of the approaches, experiences,

recommendations and algorithms of other compiler writers.

Why Study Compiler Design?

Why should compiler design be studied? Why is this subject

considered to be an important component of the education

of a computer scientist? After all, only a small proportion of

software engineers are employed on large-scale, traditional

compiler projects. But knowing something about what

happens within a compiler can have many benefits.

Understanding the technology and limitations of a compiler

is important knowledge for any user of a compiler.

Compilers are complex pieces of code and an awareness of

how they work can very helpful. The algorithms used in a

compiler are relevant to many other application areas such

as aspects of text decoding and analysis and the

development of command-driven interfaces. The need for

simple domain-specific languages occurs frequently and the

knowledge of compiler design can facilitate their rapid

implementation.

Writing a simple compiler is an excellent educational

project and enhances skills in programming language

understanding and design, data structure and algorithm

design and a wide range of programming techniques.

Understanding how a high-level language program is

translated into a form that can be executed by the hardware

gives a good insight into how a program will behave when it

runs, where the performance bottlenecks will be, the costs

of executing individual high-level language statements and

so on. Studying compiler design makes you a better

programmer.

Why Another Book?
Why is there now yet another book on compiler design?

Many detailed and comprehensive textbooks in this field

have already been published. This book is a little different

from most of the others. Hopefully, it presents key aspects

of the subject in an accessible way, using a practical

approach. The algorithms shown are all capable of

straightforward implementation in almost any programming

language, and the reader is strongly encouraged to read the

text and in parallel produce code for implementations of the

compiler modules being described. These practical

examples are concentrated in areas of compiler design that

have general applicability. For example, the algorithms

shown for performing lexical and syntax analysis are not

restricted for use in compilers alone. They can be applied to

the analysis required in a wide range of text-based software.

The field of programming language implementation is

huge and this book covers only a small part of it. Just the

basic principles, potentially applicable to all compilers, are

explained in a practical way.

What’s in this Book?
This book introduces the topic of compiler construction

using many programmed examples, showing code that

could be used in a range of compiler and compiler-related

projects. The code examples are nearly all written in C, a

mature language and still in widespread use. Translating

them into another programming language should not cause

any real difficulty. Many existing compiler projects are

written in C, many new compiler projects are being written

in C and there are many compiler construction tools and

utilities designed to support compiler implementations in C.

Character handling and dynamic data structure

management are well-handled by C. It is a good language

for compiler construction. Therefore, it may have seemed

appropriate to choose the construction of a C compiler as a

central project for this textbook. However, this would not

have been sensible because it is a huge project, and the key

algorithms of language analysis and translation would be

overwhelmed by the detail necessary to deal with the

numerous complexities of a “real” programming language,

even one regarded as being simpler than many.

This book is primarily about compiler construction, and it

is not specifically about the use of compiler-related

algorithms in other application areas. Hopefully, though,

there is enough information in the analysis chapters to show

how these standard grammar-based techniques can be

applied very much more widely.

Although many examples in this book are taken from

code that may appear in a complete C compiler, the

emphasis is on the development of a compiler for the DL

language. This is a very simple language developed for the

needs of this book from languages used in a series of

practical exercises from various undergraduate and

postgraduate compiler construction courses presented by

the author. The syntax of DL is loosely based on a subset of

C, but with many restrictions. In particular, there is just one

data type (the integer), and although functions are

supported, their functionality is rather restricted.

Nevertheless, DL is sufficiently powerful to be usable for real

problems. The syntax of DL is presented in the appendix.

The widely-available
flex
and
bison
tools are introduced,

and their use in practical implementations is discussed,

especially in the context of generating a compiler for DL.

These particular packages provide a good insight into the

benefits offered by the many powerful compiler generation

tools now available.

The software examples in this book were developed and

tested on systems running Fedora Linux on an x86-64

architecture. The C compiler used was GCC. Machine and

operating system dependencies are probably inevitable, but

any changes needed to move this code to a different

computer or operating system should be comparatively

minor.

The code examples are concentrated on the compiler’s

front-end. Code for intermediate code optimisation, target

machine code generation and optimisation tends to be long,

complex and often overwhelmed by target machine detail.

Hence, code examples from the back-end are largely

avoided in this book so that no introduction to or detailed

discussion of assembly language programming is included.

Instead, the text presents the basic principles of back-end

design from which code generators for diverse target

architectures can be developed. References are given to

sources providing further algorithm examples.

The source code of a complete DL compiler is
not

presented in this book. The real reason for this is that there

is an underlying assumption that one of the most important

practical exercises of the book is to produce a complete

compiler for DL. A large number of code examples taken

from a compiler are included in the text to illustrate the

principles being described so that the reader will not be

coding from scratch.

How Should this Book be Used?
This book can be used to accompany taught courses in

programming language implementation and compiler

design, and it can also be used for self-study. There is an

assumption that students using this book will have some

programming skills but not necessarily significant

experience of writing large software systems. A working

understanding of basic data structures such as trees is

essential. The examples in the book are coded in C, but a

comprehensive knowledge of C is really not required to

understand these examples and the accompanying text. A

basic knowledge of computer hardware is also assumed,

including just the rudiments of the principles of assembly-

level programming.

Each chapter ends with a few exercises. They vary a

great deal in complexity. Some involve just a few minutes of

thought, whereas others are major programming projects.

Many of the exercises are appropriate for group discussion

and some may form the basis of group projects involving

code implementation as well as research.

It is especially important to make the most of the

practical aspects of this subject by coding parts of a

compiler as the book is being read. This will help greatly to

alleviate boredom and will hugely help with the process of

understanding. For example, for the newcomer to recursive

descent parsing, the power and elegance of the technique

can only be fully appreciated when a working

implementation has been written.

The obvious project work associated with this book is to

write a complete compiler for the DL language. Assuming

that a simple target machine is chosen, the project is of a

reasonable size and can fit well into an average size

university or college course. Extensions to such a compiler

by including optimisation and register allocation can follow

in a more advanced course. The project can be taken even

further by developing the DL compiler into a complete C

compiler, but the time required to do this should not be

underestimated. Writing a simple compiler following the

steps described in this book is not a huge task. But it is

important not to abandon the standard techniques. I have

seen some students getting into major difficulties with the

implementation of their compilers, coded using a “much

better algorithm” of their own devising! The correct

approach is reliable and really does involve a careful and

systematic implementation with extensive testing of each

module before it is combined with others.

Although the DL language is used as an example in most

of the chapters, this book is not intended to be a tutorial

guide for writing DL compilers. Its aims are much broader

than this—it tries to present the principles of compiler

design and the implementation of certain types of

programming language, and where appropriate, DL-targeted

examples are presented. Should the reader want to accept

the challenge of writing a complete DL compiler (and I

would certainly recommend this), then the key practical

information about lexical and syntax analysis is easy to find

in Chaps.
3
and
5
and semantic analysis in Chap.
6
. There

is then some information about DL-specific issues of code

generation in Chap.
8
.

Turning the compiler construction project into a group

project worked well. Programming teams can be made

responsible for the construction of a complete compiler. The

development can be done entirely by members of the team

or it may be possible for teams to trade with other teams.

This is a good test of well-documented interfaces. Producing

a set of good test programs to help verify that a compiler

works is an important part of the set of software modules

produced by each team.

Generating standard-format object code files for real

machines in an introductory compilers course may be trying

to go a little too far. Generating assembly code for a simple

processor or for a simple subset of a processor’s features is

probably a better idea. Coding an emulator for a simple

target machine is not difficult—just use the techniques

described in this book, of course. Alternatively, there are

many virtual target architecture descriptions with

corresponding emulator software freely available. The MIPS

architecture, with the associated SPIM software [1], despite

its age, is still very relevant today and is a good target for

code generation. The pleasure of writing a compiler that

produces code that actually runs is considerable!

Acknowledgement
This book is loosely based on

material presented in several undergraduate and

postgraduate lecture courses at the University of Sussex. I

should like to thank all the students who took these courses

and who shared my enthusiasm for the subject. Over the

years, I watched thousands of compilers being developed

and discovered which parts of the process they usually

found difficult. I hope that I have addressed those issues

properly in this book.

Thanks also go to my colleagues at the University of

Sussex—in particular to all the staff and students in the

Foundations of Software Systems research group who

provided such a supportive and stimulating work

environment. Particular thanks go to Bernhard Reus for all

his suggestions and corrections.

I’m really grateful to Ian Mackie, the UTICS series editor,

and to Helen Desmond at Springer for their constant

enthusiasm for the book. They always provided advice and

support just when it was needed.

Finally, and most important, I should like to thank Wendy,

Helen and Jonathan for tolerating my disappearing to write

and providing unfailing encouragement.

Reference

1. Larus JR (1990) SPIM S20: a MIPS R2000 simulator.

Technical Report 966. University of Wisconsin-Madison,

Madison, WI, Sept 1990

Des Watson

Sussex, UK

Contents

1 Introduction

1.​1 High-Level Languages

1.​1.​1 Advantages of High-Level Languages

1.​1.​2 Disadvantages of High-Level Languages

1.​2 High-Level Language Implementation

1.​2.​1 Compilers

1.​2.​2 Compiler Complexity

1.​2.​3 Interpreters

1.​3 Why Study Compilers?​

1.​4 Present and Future

1.​5 Conclusions and Further Reading

References

2 Compilers and Interpreters

2.​1 Approaches to Programming Language

Implementation

2.​1.​1 Compile or Interpret?​

2.​2 Defining a Programming Language

2.​2.​1 BNF and Variants

2.​2.​2 Semantics

2.​3 Analysis of Programs

2.​3.​1 Grammars

2.​3.​2 Chomsky Hierarchy

2.​3.​3 Parsing

2.​4 Compiler and Interpreter Structure

2.​4.​1 Lexical Analysis

2.​4.​2 Syntax Analysis

2.​4.​3 Semantic Analysis

2.​4.​4 Machine-Independent Optimisation

2.​4.​5 Code Generation

2.​4.​6 Machine-Dependent Optimisation

2.​4.​7 Symbol Tables

2.​4.​8 Implementation Issues

2.​5 Conclusions and Further Reading

References

3 Lexical Analysis

3.​1 Lexical Tokens

3.​1.​1 An Example

3.​1.​2 Choosing the List of Tokens

3.​1.​3 Issues with Particular Tokens

3.​1.​4 Internal Representation of Tokens

3.​2 Direct Implementation

3.​2.​1 Planning a Lexical Analyser

3.​2.​2 Recognising Individual Tokens

3.​2.​3 More General Issues

3.​3 Regular Expressions

3.​3.​1 Specifying and Using Regular Expressions

3.​3.​2 Recognising Instances of Regular

Expressions

3.​3.​3 Finite-State Machines

3.​4 Tool-Based Implementation

3.​4.​1 Towards a Lexical Analyser for C

3.​4.​2 Comparison with a Direct Implementation

3.​5 Conclusions and Further Reading

References

4 Approaches to Syntax Analysis

4.​1 Derivations

4.​1.​1 Leftmost and Rightmost Derivations

4.​2 Parsing

4.​2.​1 Top–Down Parsing

4.​2.​2 Parse Trees and the Leftmost Derivation

4.​2.​3 A Top–Down Parsing Algorithm

4.​2.​4 Classifying Grammars and Parsers

4.​2.​5 Bottom-Up Parsing

4.​2.​6 Handling Errors

4.​3 Tree Generation

4.​4 Conclusions and Further Reading

References

5 Practicalities of Syntax Analysis

5.​1 Top-Down Parsing

5.​1.​1 A Simple Top-Down Parsing Example

5.​1.​2 Grammar Transformation for Top-Down

Parsing

5.​2 Bottom-Up Parsing

5.​2.​1 Shift-Reduce Parsers

5.​2.​2 Bison—A Parser Generator

5.​3 Tree Generation

5.​4 Syntax Analysis for DL

5.​4.​1 A Top-Down Syntax Analyser for DL

5.​4.​2 A Bottom-Up Syntax Analyser for DL

5.​4.​3 Top-Down or Bottom-Up?​

5.​5 Error Handling

5.​6 Declarations and Symbol Tables

5.​7 What Can Go Wrong?​

5.​8 Conclusions and Further Reading

References

6 Semantic Analysis and Intermediate Code

6.​1 Types and Type Checking

6.​1.​1 Storing Type Information

6.​1.​2 Type Rules

6.​2 Storage Management

6.​2.​1 Access to Simple Variables

6.​2.​2 Dealing with Scope

6.​2.​3 Functions

6.​2.​4 Arrays and Other Structures

6.​3 Syntax-Directed Translation

6.​3.​1 Attribute Grammars

6.​4 Intermediate Code

6.​4.​1 Linear IRs

6.​4.​2 Graph-Based IRs

6.​5 Practical Considerations

6.​5.​1 A Three-Address Code IR

6.​5.​2 Translation to the IR

6.​5.​3 An Example

6.​6 Conclusions and Further Reading

References

7 Optimisation

7.​1 Approaches to Optimisation

7.​1.​1 Design Principles

7.​2 Local Optimisation and Basic Blocks

7.​2.​1 Constant Folding and Constant

Propagation

7.​2.​2 Common Subexpressions

7.​2.​3 Elimination of Redundant Code

7.​3 Control and Data Flow

7.​3.​1 Non-local Optimisation

7.​3.​2 Removing Redundant Variables

7.​3.​3 Loop Optimisation

7.​4 Parallelism

7.​4.​1 Parallel Execution

7.​4.​2 Detecting Opportunities for Parallelism

7.​4.​3 Arrays and Parallelism

7.​5 Conclusions and Further Reading

References

8 Code Generation

8.​1 Target Machines

8.​1.​1 Real Machines

8.​1.​2 Virtual Machines

8.​2 Instruction Selection

8.​3 Register Allocation

8.​3.​1 Live Ranges

8.​3.​2 Graph Colouring

8.​3.​3 Complications

8.​3.​4 Application to DL’s Intermediate

Representation

8.​4 Function Call and Stack Management

8.​4.​1 DL Implementation

8.​4.​2 Call and Return Implementation

8.​5 Optimisation

8.​5.​1 Instruction-Level Parallelism

8.​5.​2 Other Hardware Features

8.​5.​3 Peephole Optimisation

8.​5.​4 Superoptimisatio​n

8.​6 Automating Code Generator Construction

8.​7 Conclusions and Further Reading

References

9 Implementation Issues

9.​1 Implementation Strategies

9.​1.​1 Cross-Compilation

9.​1.​2 Implementation Languages

9.​1.​3 Portability

9.​2 Additional Software

9.​3 Particular Requirements

9.​4 The Future

9.​5 Conclusions and Further Reading

References

Appendix A: The DL Language

Index

List of Figures

Figure 2.1 A simple view of programming language

implementation

Figure 2.2 A trivial language

Figure 2.3 BNF for simple arithmetic expressions

Figure 2.4 Syntactic structure of the expression
1 + 2 * 3

Figure 2.5 The analysis/synthesis view of compilation

Figure 2.6 Phases of compilation

Figure 3.1 Directed graph representation of

Figure 3.2 Transition diagram for the regular expression

Figure 4.1 BNF for a trivial arithmetic language

Figure 4.2 Tree from the derivation of
x+y*z

Figure 4.3 Two parse trees for
x+y+z

Figure 5.1 A very simple DL program

Figure 5.2 Tree from the program of Fig. 5.1

Figure 6.1 Structural equivalence

Figure 6.2 Annotated tree

Figure 6.3 Tree for

Figure 6.4 Common subexpression

Figure 6.5 Basic blocks with control flow

Figure 6.6 Translation of DL to IR

Figure 6.7 A generalised tree node

Figure 7.1 Basic blocks of factorial main program (see

appendix)

Figure 7.2 Flow between basic blocks

Figure 8.1 Trees representing machine instructions

Figure 8.2 Live ranges and register interference graph

Figure 8.3 Graph colouring algorithm

Figure 8.4 Graph colouring algorithm—register allocation

(1)

© Springer International Publishing AG 2017

Des Watson, A Practical Approach to Compiler Construction, Undergraduate

Topics in Computer Science, DOI 10.1007/978-3-319-52789-5_1

1. Introduction
Des Watson1

Department of Informatics, Sussex University,
Brighton, East Sussex, UK

Des Watson

Email: desw@sussex.ac.uk

The high-level language is the central tool for the

development of today’s software. The techniques used for

the implementation of these languages are therefore very

important. This book introduces some of the practicalities of

producing implementations of high-level programming

languages on today’s computers. The idea of a compiler,

traditionally translating from the high-level language source

program to machine code for some real hardware processor,

is well known but there are other routes for language

implementation. Many programmers regard compilers as

being deeply mysterious pieces of software—black boxes

which generate runnable code—but some insight into the

internal workings of this process may help towards their

effective use.

Programming language implementation has been studied

for many years and it is one of the most successful areas of

computer science. Today’s compilers can generate highly

optimised code from complex high-level language programs.

mailto:desw@sussex.ac.uk

These compilers are large and extremely complex pieces of

software. Understanding what they do and how they do it

requires some background in programming language theory

as well as processor design together with a knowledge of

how best to structure the processes required to translate

from one computer language to another.

1.1 High-Level Languages
Even in the earliest days of electronic computing in the

1940s it was clear that there was a need for software tools

to support the programming process. Programming was

done in machine code, it required considerable skill and was

hard work, slow and error prone. Assembly languages
were

developed, relieving the programmer from having to deal

with much of the low-level detail, but requiring an

assembler, a piece of software to translate from assembly

code to machine code. Giving symbolic names to

instructions, values, storage locations, registers and so on

allows the programmer to concentrate on the coding of the

algorithms rather than on the details of the binary

representation required by the hardware and hence to

become more productive. The abstraction provided by the

assembly language allows the programmer to ignore the

fine detail required to interact directly with the hardware.

The development of high-level languages gathered speed

in the 1950s and beyond. In parallel there was a need for

compilers and other tools for the implementation of these

languages. The importance of formal language

specifications was recognised and the correspondence

between particular grammar types and straightforward

implementation was understood. The extensive use of high-

level languages prompted the rapid development of a wide

range of new languages, some designed for particular

application areas such as COBOL
for business

applications [1] and FORTRAN
for numerical

computation [2]. Others such as PL/I
(then called NPL) [3]

tried to be very much more general-purpose. Large teams

developed compilers for these languages in an environment

where target machine architectures were changing fast too.

1.1.1 Advantages of High-Level
Languages
The difficulties of programming in low-level languages are

easy to see and the need for more user-friendly languages is

obvious. A programming notation much closer to the

problem specification is required. Higher level abstractions

are needed so that the programmer can concentrate more

on the problem rather than the details of the

implementation of the solution.

High-level languages can offer such abstraction. They

offer many potential advantages over low-level languages

including:

Problem solving is significantly faster. Moving from the

problem specification to code is simpler using a high-

level language. Debugging high-level language code is

much easier. Some high-level languages are suited to

rapid prototyping, making it particularly easy to try out

new ideas and add debugging code.

High-level language programs are generally easier to

read, understand and hence maintain. Maintenance of

code is now a huge industry where programmers are

modifying code unlikely to have been written by

themselves. High-level language programs can be

made, at least to some extent, self-documenting,

reducing the need for profuse comments and separate

documentation. The reader of the code is not

overwhelmed by the detail necessary in low-level

language programs.

High-level languages are easier to learn.

High-level language programs can be structured more

easily to reflect the structure of the original problem.

Most current high-level languages support a wide range

of program and data structuring features such as object

orientation, support for asynchronous processes and

parallelism.

High-level languages can offer software portability. This

demands some degree of language standardisation.

Most high-level languages are now fairly tightly defined

so that, for example, moving a Java program from one

machine to another with different architectures and

operating systems should be an easy task.

Compile-time checking can remove many bugs at an

early stage, before the program actually runs. Checking

variable declarations, type checking, ensuring that

variables are properly initialised, checking for

compatibility in function arguments and so on are often

supported by high-level languages. Furthermore, the

compiler can insert runtime code such as array bound

checking. The small additional runtime cost may be a

small price to pay for early removal of errors.

1.1.2 Disadvantages of High-Level
Languages
Despite these significant advantages, there may be

circumstances where the use of a low-level language

(typically an assembly language) may be more appropriate.

We can identify possible advantages of the low-level

language approach.

The program may need to perform some low-level,

hardware-specific operations which do not correspond to

a high-level language feature. For example, the

hardware may store device status information in a

particular storage location—in most high-level

languages there is no way to express direct machine

addressing. There may be a need to perform low-level

i/o, or make use of a specific machine instruction, again

probably difficult to express in a high-level language.

The use of low-level languages is often justified on the

grounds of efficiency in terms of execution speed or

runtime storage requirements. This is an important

issue and is discussed later in this section.

These disadvantages of high-level languages look

potentially serious. They need further consideration.

1.1.2.1 Access to the Hardware

A program running on a computer system needs to have

access to its environment. It may input data from the user,

it may need to output results, create a file, find the time of

day and so on. These tasks are hardware and operating

system specific and to achieve some portability in coding

the high-level language program performing these actions,

the low-level details have to be hidden. This is

conventionally done by providing the programmer with a

library
acting as an interface between the program and the

operating system and/or hardware. So if the program wants

to write to a file, it makes a call to a library routine and the

library code makes the appropriate operating system calls

and performs the requested action.

To address the stated advantage of low-level languages

mentioned above there is nothing to stop the construction

of operating system and machine-specific libraries to

perform the special-purpose tasks such as providing access

to a particular storage location or executing a particular

machine instruction. There may be machine-specific

problems concerned with the mechanism used to call and

return from this library code with, for example, the use of

registers, or with the execution time cost of the call and

return, but such difficulties can usually be overcome.

A few programming languages provide an alternative

solution by supporting inline assembly code. This code is

output unchanged by the compiler, providing the high-level

language program direct access to the hardware. This is a

messy solution, fraught with danger, and reliable means

have to be set up to allow data to be passed into and

returned from this code. Such facilities are rarely seen

today.

1.1.2.2 Efficiency

There are many programming applications where efficiency

is a primary concern. These could be large-scale

computations requiring days or weeks of processor time or

even really short computations with severe real-time

constraints. Efficiency is usually concerned with the

minimisation of computation time, but other constraints

such as memory usage or power consumption could be

more important.

In the early development of language implementations,

the issue of efficiency strongly influenced the design of

compilers. The key disadvantage of high-level languages

was seen as being one of poor efficiency. It was assumed

that machine-generated code could never be as efficient as

hand-written code. Despite some remarkable optimisations

performed by some of the early compilers (particularly for

FORTRAN), this remained largely true for many years. But as

compiler technology steadily improved, as processors

became faster and as their architectures became more

suited to running compiler-generated code from high-level

language programs, the efficiency argument became much

less significant. Today, compiler-generated code for a wide

range of programming languages and target machines is

likely to be just as efficient, if not more so, than hand-

written code.

Does this imply that justifying the use of low-level

languages on the grounds of producing efficient code is now

wrong? The reality is that there may be some circumstances

where coding in machine or assembly code, very carefully,

by hand, will lead to better results. This is not really feasible

where the amount of code is large, particularly where the

programmer loses sight of the large-scale algorithmic issues

while concentrating on the small-scale detail. But it may be

a feasible approach where, for example, a small function

needs to run particularly quickly and the skills of a

competent low-level programmer with a good knowledge of

the target machine are available. Mixing high-level language

programming with low-level language programming is

perfectly reasonable in this way. But if the amount of code

to be optimised is very small, other automated methods

may be available (for example [4]).

When developing software, a valuable rule to remember

is that there is no need to optimise if the code is already

fast enough. Modern processors are fast and a huge amount

can be achieved during the time taken for a human to react

to the computer’s output. However, this does not imply that

compilers need never concern themselves with code

optimisation—there will always be some applications

genuinely needing the best out of the hardware.

The case for using high-level languages for almost all

applications is now very strong. In order to run programs

written in high-level languages, we need to consider how

they can be
implemented.

1.2 High-Level Language Implementation
A simplistic but not inaccurate view of the language

implementation process suggests that some sort of

translator program is required (a compiler) to transform the

high-level language program into a semantically equivalent

machine code program that can run on the target machine.

Other software, such as libraries, will probably also be

required. As the complexity of the source language

increases as the language becomes “higher and higher-

level”, closer to human expression, one would expect the

complexity of the translator to increase too.

Many programming languages have been and are

implemented in this way. And this book concentrates on this

implementation route. But other routes are possible, and it

may be the characteristics of the high-level language that

forces different approaches. For example, the traditional

way of implementing Java makes use of the Java Virtual

Machine
(JVM) [5], where the compiler translates from Java

source code into JVM code and a separate program (an

interpreter) reads these virtual machine instructions,

emulating the actions of the virtual machine, effectively

running the Java program. This seemingly contrary

implementation method does have significant benefits. In

particular it supports Java’s feature of dynamic class

loading. Without such an architecture-neutral virtual

machine code, implementing dynamic class loading would

be very much more difficult. More generally, it allows the

support of reflection, where a Java program can examine or

modify at runtime the internal properties of the executing

program.

Interpreted approaches are very appropriate for the

implementation of some programming languages.

Compilation overheads are reduced at the cost of longer

runtimes. The programming language implementation field

is full of tradeoffs. These issues of compilers versus

interpreters are investigated further in Chap. 2.

To make effective use of a high-level language, it is

essential to know something about its implementation. In

some demanding application areas such as embedded

systems where a computer system with a fixed function is

controlling some electronic or mechanical device, there may

be severe demands placed on the embedded controller and

the executing code. There may be real-time constraints (for

example, when controlling the ignition timing in a car

engine where a predefined set of operations has to

complete in the duration of a spark), memory constraints

(can the whole program fit in the 64 k bytes available on the

cheap version of the microcontroller chip?) or power

consumption constraints (how often do I have to charge the

batteries in my mobile phone?). These constraints make

demands on the performance of the hardware but also on

the way in which the high-level language implementing the

system’s functionality is actually implemented. The

designers need to have an in-depth knowledge of the

implementation to be able to deal with these issues.

1.2.1 Compilers
The compiler is a program translating from a source

language to a target language, implemented in some

implementation language. As we have seen, the traditional

view of a compiler is to take some high-level language as

input and generate machine code for some target machine.

Choice of implementation language is an interesting issue

and we will see later in Chap. 9 why the choice of this

language may be particularly important.

The field of compilation is not restricted to the generation

of low-level language code. Compiler technology can be

developed to translate from one high-level language to

another. For example, some of the early C++ compilers

generated C code rather than target machine code. Existing

C compilers were available to perform the final step.

The complexity of a compiler is not only influenced by

the complexities of the source and target languages, but

also by the requirement for optimised target code. There is

a real danger in compiler development of being

overwhelmed by the complexities and the details of the

task. A well-structured approach to compiler development is

essential.

1.2.2 Compiler Complexity
The tools and processes of programming language

implementation cannot be considered in isolation.

Collaboration between the compiler writer, the language

designer and the hardware architect is vital. The needs of

the end-users must be incorporated too. Compilers have

responded to the trend towards increased high-level

language complexity and the desire for aggressive

optimisation by becoming significantly more complex

themselves. In the early days of compilers the key concern

was the generation of good code, rivalling that of hand

coders, for machines with very irregular architectures.

Machine architectures gradually became more regular,

hence making it easier for the compiler writer. Subsequent

changes (from the 1980s) towards the much simpler

instruction sets of the reduced instruction set computers

(RISC) helped simplify the generation of good code.

Attention was also being focused on the design of the high-

level languages themselves and the support for structures

and methodologies to help the programmers directly. Today,

the pressures caused by new languages and other tools to

support the software development process are still there

and also the rapid move towards distributed computing has

placed great demands on program analysis and code

generation. Parallelism, in its various forms, offers higher

performance processing but at a cost of increased

implementation complexity.

The language implementation does not stop at the

compiler. The support of collections of library routines is

always required, providing the environment in which code

generated by the compiler can run. Other tools such as

debuggers, linkers, documentation aids and interactive

development environments are needed too. This is no easy

task.

Dealing with this complexity requires a strict approach to

design in the structuring of the compiler construction

project. Traditional techniques of software engineering
are

well applied in compiler projects, ensuring appropriate

modularisation, testing, interface design and so on.

Extensive stage-by-stage testing is vital for a compiler. A

compiler may produce highly optimised code, but if that

code produces the wrong answers when it runs, the

compiler is not of much use. To ease the task of producing a

programming language implementation, many software

tools have been developed to help generate parts of a

compiler or interpreter automatically. For example, lexical

analysers and syntax analysers (two early stages of the

compilation process) are often built with the help of tools

taking the formal specification of the syntax of the

programming language as input and generating code to be

incorporated in the compiler as output. The modularisation

of compilers has also helped to reduce workload. For

example, many compilers have been built using a target

machine independent front-end and a source language-

independent back-end using a standard intermediate

representation as the interface between them. Then front-

ends and back-ends can be mixed and matched to produce

a variety of complete compilers. Compiler projects rarely

start from scratch today.

Fortunately, in order to learn about the principles of

language implementation, compiler construction can be

greatly simplified. If we start off with a simple programming

language and generate code for a simple, maybe virtual,

machine, not worrying too much about high-quality code,

then the compiler construction project should not be too

painful or protracted.

1.2.3 Interpreters
Running
a high-level language program using a compiler is a

two-stage process. In the first stage, the source program is

translated into target machine code and in the second

stage, the hardware executes or a virtual machine
interprets

this code to produce results. Another popular approach to

language implementation generates no target code.

Instead, an interpreter reads the source program and

“executes” it directly. So if the interpreter encounters the

source statement a = b + 1, it analyses the source

characters to determine that the input is an assignment

statement, it extracts from its own data structures the value

of b, adds one to this value and stores the result in its own

record of a.

This process of source-level interpretation sounds

attractive because there is no need for the potentially

complex implementation of code generation. But there are

practical problems. The first problem concerns performance.

If a source statement is executed repeatedly it is analysed

each time, before each execution. The cost of possibly

multiple statement analysis followed by the interpreter

emulating the action of the statement will be many times

greater than the cost of executing a few machine

instructions obtained from a compilation of a = b + 1.

However this cost can be reduced fairly easily by only doing

the analysis of the program once, translating it into an

intermediate form that is subsequently interpreted. Many

languages have been implemented in this way, using an

interpreted intermediate form, despite the overhead of

interpretation.

The second problem concerns the need for the presence

of an interpreter at runtime. When the program is

“executing” it is located in the memory of the target system

in source or in a post-analysis intermediate form, together

with the interpreter program. It is likely that the total

Source-level interpretation

Intermediate code interpretation

Target code interpretation—full compilation

memory footprint is much larger than that of equivalent

compiled code. For small, embedded systems with very

limited memory this may be a decisive disadvantage.

All programming language implementations are in some

sense interpreted. With source code interpretation, the

interpreter is complex because it has to analyse the source

language statements and then emulate their execution.

With intermediate code interpretation, the interpreter is

simpler because the source code analysis has been done in

advance. With the traditional compiled approach with the

generation of target machine code, the interpretation is

done entirely by the target hardware, there is no software

interpretation and hence no overhead. Looking at these

three levels of interpretation in greater detail, one can easily

identify tradeoffs:

—interpreter complexity is

high, the runtime efficiency is low (repeated analysis

and emulation of the source code statements), the

initial compilation cost is zero because there is no

separate compiler and hence the delay in starting the

execution of the program is also zero.

—interpreter complexity

is lower, the runtime efficiency is improved (the

analysis and emulation of the intermediate code

statements is comparatively simple), there is an initial

compilation cost and hence there is a delay in starting

the program.

—there is no

need for interpreter software so interpreter

complexity is zero, the runtime efficiency is high (the

interpretation of the code is done directly by the

hardware), there is a potentially large initial

compilation cost and hence there may be a significant

delay in starting the program.

The different memory requirements of the three

approaches are somewhat harder to quantify and depend on

implementation details. In the source-level interpretation

case, a simplistic implementation would require both the

text of the source code and the (complex) interpreter to be

in main memory. The intermediate code interpretation case

would require the intermediate code version of the program

and the (simpler) interpreter to be in main memory. And in

the full compilation case, just the compiled target code

would need to be in main memory. This, of course, takes no

account of the memory requirements of the running

program—space for variables, data structures, buffers,

library code, etc.

There are other tradeoffs. For example, when the source

code is modified, there is no additional compilation

overhead in the source-level interpretation case, whereas in

the full compilation case, it is usual for the entire program or

module to be recompiled. In the intermediate code

interpretation case, it may be possible to just recompile the

source statements that have changed, avoiding a full

recompilation to intermediate code.

Finally, it should be emphasised that this issue of lower

efficiency of interpreted implementations is rarely a reason

to dismiss the use of an interpreter. The interpreting

overhead in time and space may well be irrelevant,

particularly in larger computer systems, and the benefits

offered may well overwhelm any efficiency
issues.

1.3 Why Study Compilers?

It is important to ask why the topic of compiler construction

is taught to computer science students. After all, the

number of people who actually spend their time writing

compilers is small. Although the need for compilers is clear,

there is not really a raging demand for the construction of

new compilers for general-purpose programming languages.

One of the key motivations for studying this technology is

that compiler-related algorithms have relevance to

application areas outside the compiler field. For example,

transforming data from one syntactic form into another can

be approached by considering the grammar of the structure

of the source data and using traditional parsing techniques

to read this data and then output it in the form of the new

grammar. Furthermore, it may be appropriate to develop a

simple language to act as a user interface to a program. The

simplicity and elegance of some parsing algorithms and

basing the parsing on a formally specified grammar helps

produce uncomplicated and reliable software tools.

Studying compiler construction offers the computer

science student many insights. It gives a practical

application area for many fundamental data structures and

algorithms, it allows the construction of a large-scale and

inherently modular piece of software, ideally suited for

construction by a team of programmers. It gives an insight

into programming languages, helping to show why some

programming languages are the way they are, making it

easier to learn new languages. Indeed, one of the best ways

of learning a programming language is to write a compiler

for that language, preferably writing it in its own language.

Writing a compiler also gives some insight into the design of

target machines, both real and virtual.

There is still a great deal of work to be done in

developing compilers. As new programming languages are

designed, new compilers are required, and new

programming paradigms may need novel approaches to

compilation. As new hardware architectures are developed,

there is a need for new compilation and code generation

strategies to make effective use of the machine’s features.

Although there is a steady demand for new compilers

and related software, there is also a real need for the

development of new methodologies for the construction of

high-quality compilers generating efficient code.

Implementing code to analyse the high-level language

program is not likely to be a major challenge. The area has

been well researched and there are good algorithms and

software tools to help. But the software needed to generate

target code, particularly high-quality code, is much harder

to design and write. There are few standard approaches for

this part of the compiler. And this is where there is an

enormous amount of work still to be done. For example,

generating code to make the best use of parallel

architectures is hard, and we are a long way from a general,

practical solution.

Is there really a need for heavily optimised target code?

Surely, today’s processors are fast enough and are

associated with sufficiently large memories? This may be

true for some applications, but there are many

computations where there are, for example, essential time

or space constraints. These are seen particularly in

embedded applications where processor power or memory

sizes may be constrained because of cost or where there

are severe real-time constraints. There will always be a need

to get the most from the combination of hardware and

software. The compiler specialist still has a great deal of

work to do.

1.4 Present and Future
Today’s compilers and language tools can deal with complex

(both syntactically and semantically) programming

languages, generating code for a huge range of computer

architectures, both real and virtual. The quality of generated

code from many of today’s compilers is astonishingly good,

often far better than that generated by a competent

assembly/machine code programmer. The compiler can

cope well with the complex interacting features of computer

architectures. But there are practical limits. For example,

the generation of truly optimal code (optimising for speed,

size, power consumption, etc.) may in practice be at best

time consuming or more likely impossible. Where we need

to make the best use of parallel architectures, today’s

compilers can usually make a good attempt, but not

universally. There are many unsolved optimisation-related

problems. Also, surely there must be better processor

architectures for today’s and tomorrow’s programming

languages?

Compilers are not just about generating target code from

high-level language programs. Programmers need software

tools, probably built on compiler technology, to support the

generation of high-quality and reliable software. Such tools

have been available for many years to perform very specific

tasks. For example, consider the lint tool [6] to highlight

potential trouble spots in C programs. Although huge

advances have been made, much more is required and this

work clearly interacts with programming language design as

well as with diverse areas of software engineering.

1.5 Conclusions and Further Reading
A study of the history of programming languages provides

some good background to the development of

implementations. Detailed information about early

languages appears in [7] and more recent articles are easily

found on the web. Several pictorial timelines have been

produced, showing the design connections between

programming languages.

Similarly, the history of processor design shows how the

compiler writer has had to deal with a rapidly changing

target. Web searches reveal a huge literature, and it is easy

to see how the development of hardware architectures in

more recent years has been influenced by the compiler

writer and indirectly by the needs of the high-level language

programmer. A full and wide-ranging coverage of computer

hardware is contained in [8]. A comprehensive coverage of

modern architecture together with historical perspectives is

found in [9].

To help put the material appearing in the rest of this book

into context, it is worth looking at some existing compiler

projects. But it is important not to be put off by the scale of

some of these projects. Many have been developed over

decades, with huge programming teams. Perhaps most

famous is GCC
(the GNU Compiler Collection), documented

at https://​gcc.​gnu.​org/​ which “... includes front ends for C,

C++, Objective-C, Fortran,1 Java, Ada, and Go”. This website

includes links to numerous documents describing the

project from the point of view of the user, the maintainer,

the compiler writer and so on. The LLVM Compiler

Infrastructure is documented at http://​llvm.​org — another

collection of compilers and related tools, now in widespread

use. The comp.compilers newsgroup and website (http://​

compilers.​iecc.​com/​) is an invaluable resource for compiler

writers.

Exercises

1.1 Try to find a compiler that has an option to allow you

to look at the generated code (for example, use the -S

option in GCC). Make sure that any optimisation

options are turned off. Look at the code generated

from a simple program (only a few source lines) and

try to match up blocks of generated code with source

statements. Details are not important, and you do not

https://gcc.gnu.org/
http://llvm.org/
http://compilers.iecc.com/

need an in-depth knowledge of the architecture or

instruction set of the target machine. By using various

source programs, try to get some vague idea of how

different source language constructs are translated.

Now, turn on optimisation. It should be very much

harder to match the input with the output. Can you

identify any specific optimisations that are being

applied?

1.2 Find the documentation for a “big” compiler. Spend

some time looking at the options and features

supported by the package.

1.3 Find the instruction set of the main processor

contained in the computer you use most often. How

much memory can it address? How many registers

does it have? What can it do in parallel? How many

bits can it use for integer and for floating point

arithmetic? Approximately how long does it take to

add two integers contained in registers?

1.4 Look back at the design of a much older processor (for

example, the DEC PDP-11 architecture is well

documented on the web). Answer the questions listed

above for this processor.

1.5 Try to find out something about the optimisations

performed by the early FORTRAN compilers. The work

done by IBM on some early FORTRAN compilers is well

documented and shows the efforts made by the

company to move programmers away from assembly

language programming. Try also to find out about

more recent attempts with Fortran (note the

capitalisation!) to make the most of parallel

architectures.

1.6 Do some research to find out the key trends in

processor design over the last few decades. Do the

same for high-level language design. How have these

trends affected the design of compilers and

interpreters?

1.7 To prepare for the practical programming tasks ahead,

write a simple program to read a text file, make some

trivial transformation character by character such as

swapping the case of all letters, and write the result to

another text file. Keep this program safe. It will be

useful later when it can be augmented to produce a

complete lexical analyser.

References
1. American National Standards Institute, New York (1974) USA Standard

COBOL, X3.23-1974

2. United States of America Standards Institute, New York (1966) USA
Standard FORTRAN – USAS X3.9-1966

3. Radin G, Paul Rogoway H (1965) NPL: highlights of a new programming
language. Commun ACM 8(1):9–17
[CrossRef][MATH]

4. Massalin H (1987) Superoptimizer – a look at the smallest program. In:
Proceedings of the second international conference on architectural support
for programming languages and operating systems (ASPLOS-II). Palo Alto,
California. Published as ACM SIGPLAN Notices 22:10, pp 122–126

5. Lindholm T, Yellin F (1997) The Java virtual machine specification. The Java
series. Addison-Wesley, Reading

6. Johnson SC (1978) Lint, a C program checker. Technical report. Bell
Laboratories, Murray Hill, p 07974

7.
Sammet JE (1969) Programming languages: history and fundamentals.

http://dx.doi.org/10.1145/363707.363708
http://www.emis.de/MATH-item?0128.37107

1

Prentice-Hall, Englewood Cliffs
[MATH]

8. Tanenbaum AS, Austin T (2013) Structured computer organization. Pearson,
Upper Saddle River

9. Hennessy JL, Patterson DA (2012) Computer architecture – a quantitative
approach, 5th edn. Morgan Kaufmann, San Francisco
[MATH]

Footnotes
Note the capitalisation. After FORTRAN 77, the language became known as
Fortran.

http://www.emis.de/MATH-item?0188.23003
http://www.emis.de/MATH-item?0752.68014

(1)

© Springer International Publishing AG 2017

Des Watson, A Practical Approach to Compiler Construction, Undergraduate

Topics in Computer Science, DOI 10.1007/978-3-319-52789-5_2

2. Compilers and Interpreters
Des Watson1

Department of Informatics, Sussex University,
Brighton, East Sussex, UK

Des Watson

Email: desw@sussex.ac.uk

Before looking at the details of programming language

implementation, we need to examine some of the

characteristics of programming languages to find out how

they are structured and defined. A compiler, or other

approach to implementation, is a large and complex

software system and it is vital to have some clear and

preferably formal structure to support its construction.

This chapter examines some of the approaches that can

be used for high-level programming language

implementation on today’s computer hardware and provides

some of the background to enable high-level to low-level

language translation software to be designed in a structured

and standard way.

2.1 Approaches to Programming
Language Implementation

mailto:desw@sussex.ac.uk

The traditional approach for the implementation of a

programming language is to write a program that translates

programs written in that language into equivalent programs

in the machine code of the target processor. To make the

description of this process a little easier, we shall assume

that the source program is written in a language called

mylanguage and we are producing a program to run on

mymachine. This view is shown in Fig. 2.1.

This trivial diagram is important because it forces us to

consider some important issues. First, what precisely is the

nature of the source program? It is obviously a program

written in mylanguage—the language we are trying to

implement. But before we can contemplate an

implementation of the translator software, we have to have

a precise definition of the rules and structure of programs

written in mylanguage. In Sect. 2.2, we consider the nature

of such a definition.

Fig. 2.1 A simple view of programming language implementation

Second, what sort of programming language is

mylanguage? At this stage it may not really matter, but the

nature of the language will of course affect the design of the

translator software. For example, if mylanguage is a high-

level programming language and mymachine is a hardware-

implemented processor, then the translator program is

usually called a compiler
. This book concentrates on this

particular configuration. If, however, mylanguage is an

assembly language (for mymachine) then the translator is

usually called an assembler and would be significantly

easier to implement than a compiler.

Can programs in mylanguage be passed directly into the

translator or does it make more sense to preprocess the

programs first? For example, programs written in C can

include language features best dealt with by a preprocessor.

This stage could of course be regarded as being an integral

part of the translation process.

Third, what sort of language is used to express the

program to run on mymachine? Again if mymachine is a

hardware-implemented processor, then we are probably

looking at the generation of machine code programs

encoded in some object file format dependent on the design

of mymachine and probably on the operating system running

on mymachine. Generating assembly language may be the

right thing to do, requiring the existence of a separate

assembler program to produce code directly runnable on

mymachine. And there are other possibilities too. A popular

approach to language implementation assumes that

mymachine is a virtual machine
. This is a machine for which

there is no corresponding hardware and exists only as a

consequence of a piece of software which emulates the

virtual machine instructions. This approach is examined in

Sect. 2.1.1. Furthermore, the translator could have a

somewhat different role. It could be used to translate from

mylanguage to a high-level language rather than to a low-

level language for mymachine. This would result in a

software tool which could be used to translate programs

from one high-level language to another, for example from

C++ to C. In this case, aspects of the internal design of the

translator may be rather different to that of a conventional

compiler and there is an assumption that mymachine

somehow runs programs written in the target high-level

language. There are many common principles and

algorithms that can be used in all these language

translation tasks. Whatever the form of mymachine and the

generated code, a precise specification is required, just as

for mylanguage.

At the beginning of this section is a statement that the

translator generates “equivalent programs” for mymachine.

This is an important issue. The translator should preserve

the semantics of the mylanguage program in the running of

the generated code on mymachine. The semantics of

mylanguage may be specified formally or informally and the

user of mylanguage should have a clear idea of what each

valid program should “mean”. For example, translating the

statement a = a + 2 into code that increments the value of

a by 3 is not right, certainly for a sensible programming

language! The translator should translate correctly.

Assuming that mylanguage and mymachine are both non-

trivial, the translator is going to be a complex piece of

software. It is the role of this book to help explain how this

software can be structured to make it feasible to produce a

reliable translator in a reasonable time. We concentrate in

this book on the structure of compilers and later in this

chapter a traditional internal structure of a compiler is

described. But it is helpful now to say that a compiler can be

built of two distinct phases. The first is the analysis phase
,

reading the source program in mylanguage, creating internal

data structures reflecting its syntactic and semantic

structure according to the definition of mylanguage. The

second is the synthesis phase
, generating code for

mymachine from the data structures created by the analysis

phase. Thinking about a compiler in terms of these two

distinct phases can greatly simplify both design and

implementation.

2.1.1 Compile or Interpret?
Figure 2.1 illustrates the conventional view of a compiler

used to generate code for a target machine from a source

program written in a high-level language. This book

concentrates on the design of this type of translator, how it

can be structured and implemented. The term compiler is

usually used for a translator from a high-level programming

language to a low-level language such as the machine code

of a target machine. However, as we have seen, the term is

sometimes used to cover translation from and to a wider

range of programming language types, such as high-level

language to another high-level language.

When a program is passed through a compiler generating

code for some target machine (say, the mymachine

processor), the code can be run on the mymachine

architecture and this has the effect of “running” the original

program. The processor hardware interprets the machine

instructions generated by the compiler and the cpu state is

altered according to the nature of the sequence of

instructions executed. However, other implementation

routes are possible and in particular there is no fundamental

necessity for the instructions generated by the compiler to

be interpreted directly by the hardware.

There are many implementations of high-level

programming languages where the compiler generates code

for a virtual machine and then a separate program, the

interpreter, reads the virtual machine code and emulates

the execution of the virtual machine, instruction by

instruction. At first sight this may seem a strange thing to

do—why not generate target machine code directly? But

this approach has several significant advantages, including

the following.

The design of the code generated by the compiler is not

constrained by the architecture of the target machine.

This can simplify the design of the compiler because it

does not have to deal with the quirks and restrictions of

the real hardware. For example, it may be convenient to

use a stack-based architecture for the virtual machine,

not directly supported by the target hardware.

Portability is enhanced. If the interpreter is written in a

portable language, the interpreter and the virtual

machine code can be shipped and easily run on

machines with different architectures or operating

systems. This ties in well with today’s prevalence of

heterogeneous networked environments.

The virtual machine code can be designed to be

particularly compact. There are application areas where

this may be very important.

Runtime debugging and monitoring features can be

incorporated in the virtual machine interpreter allowing

improved safety and security in program execution. The

virtual machine code can run in a sandbox, preventing it

from performing illegal operations. For example, the

virtual machine can operate on typed data, and runtime

type checking can provide helpful debugging

information
.

The obvious disadvantage of this approach concerns the

question of efficiency. Interpreted code is likely to be slower

than native execution. But for most applications this turns

out not to be of real significance. The advantages usually

easily outweigh this disadvantage and so many modern

programming languages are implemented in this way.

The nature of the virtual machine poses interesting

questions. The design of the virtual machine should not be

too close to that of the hardware because the advantages of

compiler simplification essentially disappear. But if the

virtual machine’s design is made very close or identical to

the language that is being implemented, the compiler is

made very simple, but the interpreter has to deal with the

detail of decoding and analysing this potentially complex

code. The functions of the compiler are being shifted into

the interpreter. However, several languages have been

implemented successfully in this way, where the interpreter

does all the work, removing the necessity for the separate

compiler. Some implementations of the BASIC language

have been implemented in this way. Because of the need for

repeated analysis of the source language statements in the

interpreter, this is rarely a practical approach for a

production system
.

These implementation issues are examined again in

Chap. 9.

2.2 Defining a Programming Language
The definition of a programming language is fundamentally

important to users of the programming language as well as

to the compiler writer. The definition has to provide

information about how to write programs in the language. It

has to specify the set, presumably infinite, of valid programs

and also what each valid program “means”. The

specification of syntax is central here. Syntax defines the

sequences of characters that could form a valid program.

And the meaning of these programs is specified by the

semantics of the language.

The language definition
should be clear, precise,

complete, unambiguous and preferably understandable by

all language users. Specifying a programming language in

an informal way using a language such as English makes

the definition accessible, but precision can suffer. Aspects of

many programming languages have been defined using

natural language and ambiguities have been common,

particularly in early revisions of the definitions. The

definition of the language’s syntax is usually done using a

more formal approach and a range of metalanguages

(languages used to define other languages) have been

developed. A few of these metalanguages are described in

Sect. 2.2.1. For most of the current and popular

programming languages, the use of a simple metalanguage

to define syntax results in a compact and largely complete

syntactic specification. We shall see in Chap. 4, how this

specification can be used as the starting point for the design

of a syntax analyser for the language.

2.2.1 BNF and Variants
Backus–Naur Form
or Backus Normal Form
is a

metalanguage
which was popularised by its use in the

definition of the syntax of ALGOL 60 [1]. It is a very simple

yet powerful metalanguage and it has been used

extensively to support the formal definitions of a huge range

of languages. It has become one of the fundamental tools of

computer science.

A BNF specification consists of a set of rules, each rule

defining a symbol (strictly a non-terminal symbol) of the

language. The use of BNF is best illustrated by some

examples. This first example (see Fig. 2.2) makes use of

some of the simpler rules and terminology of English

grammar to define the syntax of some trivial sentences.

Fig. 2.2 A trivial language

Here, we define a structure called a <sentence> as a

<subject> followed by a <verb> followed by an <object>.

An <object> includes an optional <adjective>. The tokens

on the right-hand sides of <verb>, <article>, <noun> and

<adjective> are terminal tokens implying that they cannot

be expanded further. Tokens enclosed in angle brackets in

BNF are called non-terminal tokens. Terminal tokens are just

treated as sequences of characters. The symbol

separates the token being defined from its definition. The

symbol | separates alternatives. It is the alternation

operator. The symbols , |, < and > are the metasymbols

of BNF.

This set of rules can be used to generate random

“sentences”. Where there are alternatives, random choices

can be made. For example, starting with the non-terminal

<sentence>, expanding just a single non-terminal at each

step:

<sentence>

<subject> <verb> <object>

<article> <noun> <verb> <object>

the <noun> <verb> <object>

the woman <verb> <object>

the woman watches <object>

the woman watches <article> <adjective> <noun>

the woman watches a <adjective> <noun>

the woman watches a beautiful <noun>

the
woman
watches
a
beautiful
bicycle

Be aware that BNF is far from being sufficiently powerful

to define the syntax of English or any other natural

language. And we have not considered the consequences of

semantics here. For example, this simple grammar can

generate sentences with little sense such as the bicycle

hears the book.

The power of BNF is better seen in a slightly more

complicated example, shown in Fig. 2.3.

Fig. 2.3 BNF for simple arithmetic expressions

These rules define the syntax of simple arithmetic

expressions using integer values, the operators +, -, * and

/, together with parentheses for grouping. Expressions such

as 2+3+4/5 and 2+3*(44-567) can be generated via this set

of BNF rules.

Several important points should be highlighted.

There is no upper limit to the length of expressions that

can be generated by these particular rules. This is

because these rules make use of recursion
, allowing

rule expansion to continue for an arbitrary number of

steps. Strict BNF has no mechanism for simple iteration

and recursion is used instead. For example, <expr> is

defined in terms of itself.

Consider the generation or derivation of the expression

1+2*3 using this set of rules (we omit here the steps

between <factor> and a literal integer value).

<expr>

<expr> + <term>

<term> + <term>

<factor> + <term>

1 + <term>

1 + <term> * <factor>

1 + <factor> * <factor>

1 + 2 * <factor>

1
+
2
*
3

Note particularly that in the expansion 1
+ <term>,

there is an implication that the 2*3 part of the

expression is grouped as a single entity called a

<term>. The BNF rules can be used to support the idea

of operator precedence
where here the precedence of

the * operator is higher than the precedence of the +

operator—the multiplication is “done before” the

addition. This of course coincides with the rules of

traditional arithmetic and algebra. The phrasing of the

BNF rules allow the specification of the precedence of

operators. This notion will arise repeatedly in the

techniques used for compiler construction.

Similarly, the BNF rules can be used to express the

associativity of operators. For example, consider the

generation of the expression 1+2+3. Here, the 1+2 part

of the expression is grouped as a single entity called a

<term>. The implication is, therefore, that the

expression 1+2+3 is interpreted as (1+2)+3. The +

operator is left-associative.

If different associativity or precedence rules are

required, then the BNF could be modified to express

these different rules. It is perhaps surprising that such a

simple metalanguage can do all this.

BNF has been used in the definition of many

programming languages and over the years, many

extensions to BNF have been proposed and subsequently

used. There are several different variants of the low-level

syntax of BNF-like metalanguages, but one variant became

popular after its use in the ISO Pascal Standard [2]. This

variant was called Extended Backus–Naur Form (EBNF)
. It

retains the basic principles of BNF but the syntactic detail is

a little different. The BNF example above can be translated

easily into EBNF as follows:

expr = term | expr "+" term | expr "-" term.

term = factor | term "*" factor | term "/" factor.

factor = integer | "("
expr ")".

integer = digit | integer digit.

digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9".

The terminal symbols (the symbols that cannot be

expanded any further) are all enclosed in double quotation

marks, each production rule is terminated with a full stop

and the token (rather than BNF’s) separates the non-

terminal token from its definition. The < and > brackets

have disappeared. There are some other key additional

features.

Parentheses can be used to indicate grouping in the

rule.

There is a specific feature to indicate optionality in a

rule: [X] specifies zero or one instance of X, in other

words specifying that X is optional.

Repetition (not by recursion) is supported too: {X}

implies zero or more instances of X.

We can therefore write an essentially equivalent set of

rules:

expr = term | expr ("+" | "-") term.

term = factor | term ("*" | "/") factor.

factor = integer | "("
expr ")".

integer = digit {digit}.

digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9".

EBNF offers a more compact and probably clearer route

towards the definition of the syntax of a programming

language. It ties in well with the hand construction of syntax

analysers as will be seen in Chap. 4.

Finally, a brief mention should be made of the use of

syntax diagrams in the definition of programming

languages. This approach was popularised in the original

definition of Pascal [3] and uses a pictorial notation to

represent the syntax of each of the non-terminal tokens of

the language. This too proves to be an easily understood

and compact notation.

2.2.1.1 Limitations

The formal syntax of most common programming

languages, expressed in the form of BNF or equivalent, will

almost certainly lack a specification for some of the rules for

the construction of “well-formed” programs. This is likely to

result from the fact that a BNF specification cannot express

contextual constraints
. For example, the programming

language being defined may be such that all variables have

to be declared appropriately before they are used. The C

statement i = 2; is only valid in the context of a valid

declaration for i such as int i;. This constraint does not

appear in the usual syntax specification for C. We will see

exactly why this is a problem caused by the limitations of

metalanguages such as BNF a little later in this chapter.

It is tempting, therefore, to rethink the metalanguage

used for language specification so that these additional

rules can be incorporated somehow. Such metalanguages

do exist; an example is the two-level grammar
introduced in

the definition of ALGOL 68 [4]
. This approach essentially

uses two distinct rule sets in two different metalanguages,

the first set being used to generate the second (infinite) set

which in turn is used to generate valid programs in

ALGOL 68. This infinite set of production rules has the effect

of allowing the specification of context-dependent

constraints in the language.

This and similar approaches have not proved to be

popular because of their complexity. The preferred approach

is to stick with the simple context-free rules of BNF, or

equivalent, and rely on other sets of rules, formal or

informal, to define the additional constraints. As we will see,

one of the key advantages of retaining this simple form of

syntax specification is that the generation of the

corresponding analysis phase of the compiler can be made

very simple.

2.2.2 Semantics

Unfortunately, the specification of semantics
is much harder

than the specification of syntax. Formal approaches may be

possible, based on mathematical formalisms. These

definitions may prove to be long and complex, inaccessible

to the casual user of the programming language. Formal

semantics opens up the possibility of proving program

correctness and removes the possibility of semantic

ambiguity. Several approaches to the specification of

programming language semantics have been developed—

operational semantics, denotational semantics and

axiomatic semantics, basing a formal description of

semantics on the language’s syntax. There are many good

textbooks in this area, for example see [5].

Attribute grammars can be used to help define aspects of

the semantics of a programming language, allowing the

specification of context-sensitive aspects by augmenting a

context-free grammar. Here, grammar symbols are

associated with attributes. These are values that can be

passed to both parent and child of the grammar node in

which the symbol appears. This approach allows the formal

specification of the language’s operational semantics (how

the program is interpreted as a sequence of computational

steps), supporting semantic checks such as requiring the

definition of a name before its use [6].

An alternative approach is to specify semantics

somewhat more indirectly by producing a reference

implementation. Here, a particular implementation is

selected to define how all other implementations should

behave. A program running on any of the implementations

should behave as if it is running on the reference

implementation. The simplicity of this approach is attractive.

However, there are potential problems that may arise

because of software or even hardware errors in that

reference implementation which, strictly speaking, should

be followed by all other implementations.

A third approach, and an approach used widely in the

specification of popular languages, is to specify the

semantics using a natural language
. Here, text in a natural

language such as English is used to describe the semantic

rules of the programming language. Care is needed to avoid

omission or ambiguity and to prevent the specification from

becoming overly long. There is a real danger of assuming

that the semantics of programming language constructs are

“obvious”. This is far from being true—there are many

examples of real programming language features that are

often misinterpreted by the programmer and sometimes

mis-implemented by the compiler writer.

This book takes the easy route and avoids issues

concerned with the formal specification of semantics. There

will be many semantics-related issues discussed, but using

an informal (English language) notation. We, in common

with many other compiler writers, follow this third approach

for semantics specification.

2.3 Analysis of Programs
Before looking at practical approaches for the analysis

phase of programming language translation, we have to

cover just a little theory. We need a formal structure on

which to base the process of analysis. It just cannot be done

reliably in an ad hoc way. We need to look first at the idea of

formal grammars and the notations associated with them.

These grammars form the rock on which we can build code

for programming language analysis.

2.3.1 Grammars
The term “grammar” has a wide range of definitions and

nuances and it is hardly surprising that we need a tight and

formal definition for it when used in the context of

programming languages. The idea of a set of BNF rules to

represent the grammar of a language has already been

used in this chapter, but formally a little more is required.

The grammar (G) of a language is defined as a 4-tuple

 where:

N is the finite set of non-terminal symbols.

T is the finite set of terminal symbols (N and T are

disjoint.)

S is the
starting symbol,
. The starting symbol is

the unique non-terminal symbol that is used as the

starting point for the generation of all the strings of the

language.

P is the finite set of production rules.
A production rule

defines a string transformation and it has the general

form . This rule specifies that any occurrence of the

string in the string to be transformed is replaced by

the string .

There are constraints on the constitution of the

strings and . If U is defined by (i.e. U is the

set of all non-terminal and terminal symbols), then

has to be a member of the set of all non-empty strings

that can be formed by the concatenation of members of

U, and it has to contain at least one member of N. has

to be a member of the set of all strings that can be

formed by the concatenation of members of U, including

the empty string (i.e.).

Looking back at the BNF definition of the simple

arithmetic expressions in Fig. 2.3, it is easy to see that this

forms the basis of the formal grammar of the language.

Here N is the set {expr, term, factor, integer, digit}, T is the

set {+, -, *, /, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, S is expr and P is

simply the set of rules in Fig. 2.3, translating the BNF syntax

into whatever syntax is used to represent the rules,

traditionally being replaced by . In practice, we can

afford to be a bit sloppy in the definition and use of the term

grammar since the specification of N, T and S are usually

obvious from the BNF (or equivalent) production rules. There

is a convention that the starting symbol is the non-terminal

defined in the first production rule.

If BNF, EBNF or syntax diagrams are used to specify the

production rules, all rules have a particular characteristic

that the left-hand sides of productions are always single

non-terminal symbols. This is certainly allowed by the rules

defining a grammar, but this restriction gives these

grammars certain important features which will be

examined in Sect. 2.3.2.

A grammar gives the rules for deriving strings of

characters conforming to the syntactic rules of the

grammar. A sentential form
is any string that can be derived

from S, the starting symbol. And a sentence
is a sentential

form not containing any non-terminal symbols. A sentence is

something final, it cannot be expanded any further. In the

context of grammars for programming languages, a

sentence is a complete program, containing just terminal

symbols (i.e. the characters of the language).

2.3.2 Chomsky Hierarchy
Looking at the definition of a grammar in
the last section, it

is clear that the important and potentially problematic

component is P, the set of production rules. A production

rule has the form , loosely translated as “anything can

be transformed to anything” (although we have already

stated some restrictions on the content of and). The key

question then is to remove this generality by restricting the

forms of the production rules to see whether less general

rules can be useful for defining and analysing computer

programming languages.

In the 1950s, Noam Chomsky produced a hierarchical

classification of formal grammars which provides a

framework for the definition of programming languages as

well as for the analysis of programs written in these

languages [7]. This hierarchy is made up of four levels, as

follows:

A Chomsky type 0 or a free grammar
or an unrestricted

grammar
contains productions of the form . The

restrictions on and are those already mentioned in

the section above. This was our starting point in the

definition of a grammar and as suggested, these

grammars are not sufficiently restricted to be of any

practical use for programming languages.

A Chomsky type 1 or a context-sensitive grammar
has

productions of the form where , is

non-null and A is a single non-terminal symbol. The left

context is , the right context is and in this particular

context, A is transformed to .

This type of grammar turns out to have significant

relevance to programming languages. The concept of

context is central to programming language definition

—“... this statement is only valid in the context of an

appropriate declaration of i ...”, for example. However,

in practice, these grammars do not turn out to be

particularly helpful because defining the context-

sensitive aspects of a programming language in terms

of a type 1 grammar can turn into a nightmare of

complexity. So we need to simplify further and specify

context-sensitive aspects by resorting to other means,

such as English language descriptions.

A Chomsky type 2 or a context-free grammar
has

productions of the form where A is a single non-

terminal symbol. These productions correspond directly

to BNF rules. In general, if BNF can be used in the

definition of a language, then that language is no more

complex than Chomsky type 2.

These grammars are central to the definition and

analysis of the majority of programming languages.

Despite the simplicity of the productions they are

capable of defining powerful and complex program

syntax. Chapters 4 and 5, in the discussion of syntax

analysis, are based on this grammar type. Programming

languages are generally defined using type 2 grammars

and these grammars are used directly in the production

of code for program analysis.

A Chomsky type 3 or a regular grammar
or a finite-state

grammar
puts further restrictions on the form of the

productions. Here, all productions are of the form

or where A and B are non-terminal symbols and a

is a terminal symbol. These grammars turn out to be far

too restrictive for defining the syntax of conventional

programming languages, but do have a key place in the

specification of the syntax of the basic lexical tokens

dealt with by the lexical analysis phase of a compiler

(see Chap. 3). They are the grammars for languages

that can be specified using regular expressions and

programs in these languages can be recognised using a

finite-state machine
.

These grammar types form a hierarchy, such that all type

3 languages are also type 2, 1 and 0, all type 2 languages

are also type 1 and 0 and all type 1 languages are also type

0
.

2.3.3 Parsing
Suppose we have a set of BNF (or equivalent) production

rules defining the grammar of a programming language. We

have already seen how by expanding these rules, programs

can be generated. This is a simple process. We can use

these grammar rules as a reference while writing programs

in that language to help ensure that what is written is

syntactically correct. Because the BNF specification lacks

the power to define the context-sensitive aspects of the

language, we will need additional advice about, for

example, making sure that names are declared, that types

have to match, and so on. This collection of information

serves to define the programming language and should

offer enough to allow the writing of syntactically correct

programs.

The reverse process of going from a program to some

data structure representing the structure and details of the

program, also checking that the program is indeed

syntactically correct, is unfortunately much harder. This is

the process of program analysis or parsing and is one of the

key tasks performed by a compiler.

Why is parsing so much harder? Consider a simple

example based on the grammar presented in Fig. 2.3 and on

its subsequent use to generate the expression 1+2*3. Let us

try using this grammar to work backwards from the

expression 1+2*3 to the starting symbol <expr>. We know

that this should be possible because it can be achieved by

simply reversing the steps used in its generation. Again, to

simplify, we ignore the steps between a literal integer value

and <factor>.

At this stage we seem to be stuck, implying that 1+2*3 is

syntactically incorrect. What has gone wrong?

The process of parsing repeatedly matches substrings

with the right-hand sides of productions, replacing the

matched substrings with the corresponding production’s

left-hand side. Problems arise when there is more than one

substring that can be matched or reduced at any stage. It

turns out that the choice of substring to be matched is

important. By trying this parsing process again using a

different set of reductions, we get a different result.

In this case, we end with the starting symbol so that the

parse has succeeded.

But how do we determine the proper set of reductions? It

may be that we can reach the starting symbol via several

different sets of reduction operations. In this case, we

conclude that the grammar is ambiguous
and it needs

repair, either by altering the set of productions or (not so

desirable) by adding additional descriptive explanation to

indicate which particular set of reductions is correct.

Choosing the set of reductions to be applied on a sentence

is the central issue in parsing. In Chaps. 4 and 5 algorithms

are proposed for tackling this problem.

2.3.3.1 The Output of the Parser

The parser obtains a stream of tokens, from the lexical

analyser in a conventional compiler, and matches them with

the tokens in the production rules. As well as indicating

whether the input to the parser forms a syntactically correct

sentence, the parser must also generate a data structure

reflecting the syntactic structure of the input. This can then

be passed on to later stages of the compiler
.

This data structure is traditionally a tree. The parse tree

is constructed as the parser performs its sequence of

reductions and the form of the parse tree directly reflects

the syntactic specification of the language. The root node of

the parse tree corresponds to the starting symbol of the

grammar. For example, the tree generated by running the

parser on the 1+2*3 example could take the general form

shown in Fig. 2.4a.

Fig. 2.4 Syntactic structure of the expression 1 + 2 * 3

This form of tree accurately reflects the formal syntactic

definition of the language, and much of the tree may turn

out to be redundant. Therefore it may be adequate to

generate a tree closer to the form shown in Fig. 2.4b. This is

an abstract syntax tree where not every detail of the

sequence of reductions performed by the parser is reflected

in the tree. Nevertheless, the data in the tree is sufficient for

later stages of compilation.

These trees and the algorithms used for their

construction will be examined in detail in later chapters.

2.3.3.2 Parsing Strategies

There are two broad approaches for the construction of an

algorithm for parsing. Most parsers can be classified as

being either top-down parsers or bottom-up parsers. The

parsing process takes the string to be parsed and

repeatedly matches substrings with the right-hand sides of

productions, replacing those substrings with the

corresponding left-hand sides. If we start off with a

syntactically correct sentence, the parsing process should

transform the sentence to the starting symbol via a

sequence of sentential forms. We have already seen that

the choice of which reductions are made is important and a

correctly written parser gets that choice right. Practical

parsers rarely take this approach of repeatedly manipulating

a potentially very long character string, but the principle

applies.

The top-down parser
starts with the starting symbol of

the grammar and hence with the root of the parse tree. Its

goal is to match the input available with the definition of the

starting symbol. So if the starting symbol S is defined as

, the goal of recognising S will be achieved by

recognising an instance of an A followed by recognising an

instance of a B. Similarly, if S is defined as , then the

goal of recognising S will be achieved by recognising an

instance of an A or by recognising an instance of a B. The

subgoals of recognising A and B are then dealt with

according to subsequent rules in the grammar. When the

right-hand side of a production that is being matched with

the input contains terminal symbols, these symbols can be

matched with the input string. If the matching fails, then the

parsing process fails too. But if the matching succeeds then

the process continues until, hopefully, all characters in the

input have been matched, at which point the parse

succeeds. It is hard to visualise how this top-down process

corresponds to the process described above of parsing using

repeated reductions on the original and then transformed

input string, but the top-down parser is making repeated

reductions, the order and choice being controlled by the

structure of the set of productions. Chapter 4 examines this

whole process in detail.

The bottom-up parser
perhaps reflects a more obvious

way of thinking about parsing, where, instead of starting

with the starting symbol, we start with the input string,

choose a substring to be matched with the right-hand side

of a production, replace that substring with the

corresponding left-hand side, and repeat until just the

starting symbol remains (indicating success) or until no

valid reduction can be performed (indicating failure). The

parse tree is being constructed upwards from the leaves,

finally reaching the starting symbol at the root. The key

problem here is of course one of determining which

reductions to apply and in which order. Again, we return to

this issue in Chap. 4.

2.4 Compiler and Interpreter Structure
Having looked at some of the issues of programming

language definition and analysis, we have to step back and

examine the overall structure of the programming language

translation process. The implementation of a programming

language is potentially a huge software project. The GNU

Compiler Collection (GCC) now contains well over 10 million

lines of source code. This is, admittedly, an extreme

example, but it does illustrate the need for good software

engineering principles for compiler or interpreter projects. In

order to start thinking about such a project, it is essential to

consider the structure of a compiler or an interpreter in

terms of a collection of logically separate modules so that a

large task can be viewed as a collection of somewhat

simpler tasks.

We start with the trivial view of a compiler or interpreter

shown in Fig. 2.1. In the case of a compiler, the translator is

generating code to run on a real or virtual machine. In the

case of an interpreter, the translator is generating code

which is interpreted by the interpreter program. There is no

profound difference between these two approaches (a

compiler can generate code that is interpreted by the

hardware) and hence some of the internal structures of

compilers and interpreters can be similar. In this section, we

discuss specifically the modular structure of a compiler

generating code for a real machine.

The first subdivision, we can make is to consider the

compiler as having to perform two distinct tasks, as shown

in Fig. 2.5. The analysis phase and the synthesis phase are

often referred to as the front-end and the back-end

respectively.

Fig. 2.5 The analysis/synthesis view of compilation

This subdivision, although simple, has major

consequences for the design of compilers. The interface

between these two phases is some intermediate language
,

loosely “mid-way” between the source and target

languages. If this intermediate language is designed with

care, it may then be possible to structure the compiler so

that the analysis phase becomes target machine

independent and the synthesis phase becomes source

language independent. This, in theory, allows great

potential savings in implementation effort in developing new

compilers. If a compiler structured in this way needs to be

retargeted to a new machine architecture, then only the

synthesis phase needs to be modified or rewritten. The

analysis phase should not need to be touched. Similarly, if

the compiler needs to be modified to compile a different

source language (targeting the same machine), then only

the analysis phase needs to be modified or rewritten. We

look at this issue from the view of the intermediate

representation in Chap. 6.

But the subdivision into phases needs to be taken further

to be of any use in the practical construction of a compiler.

A traditional view of compiler structuring, referred to

repeatedly in this book, is shown in Figure 2.6.

Fig. 2.6 Phases of compilation

The lexical analysis, syntax analysis, semantic analysis

and the machine-indepen dent
optimisation phases together

form the front-end of the compiler and the code generation

and machine-dependent phases form the back-end. These

phases all have specific and distinct roles. And to support

the design of these individual modules, the interfaces

between them have to be defined with care.

2.4.1 Lexical Analysis
This first phase of compilation reads the
characters of the

source program and groups them together into a stream of

lexical tokens
. Each lexical token is a basic syntactic

component of the programming language being processed.

These are tokens such as numbers, identifiers, punctuation,

operators, strings, reserved words and so on. Comments

can be ignored unless the language defines special

syntactic components encoded in comments that may be

needed later in compilation. White space (spaces, tabs,

newlines, etc.) may be ignored except, again, where they

have some syntactic significance (where spacing indicates

block structure, where white space may occur in character

strings and so on).

For example, this C program fragment:

will be read by the lexical analyser and it would generate

this stream of tokens:

sum (identifier), =, 0 (integer constant), ;, for (reserved

word), (, i (identifier), =, 0 (integer constant), ;, i

(identifier), <=, 99 (integer constant), ;, i (identifier), ++,

), sum (identifier), +=, a (identifier), [, i (identifier),], ;

The syntax of these basic lexical tokens is usually simple,

and the expectation is that the syntax can be specified

formally in terms of a Chomsky type 3 grammar (i.e. in

terms of regular expressions). This considerably simplifies

the coding of the lexical analyser.

The output of the lexical analyser is a stream of tokens,

passed to the syntax analyser. The interface could be such

that the lexical analyser tokenises the entire input file and

then passes the whole list of tokens to the syntax analyser.

Alternatively, the tokens could be passed on to the syntax

analyser one at a time, when demanded by the syntax

analyser.

2.4.2 Syntax Analysis
The syntax analyser groups and structures the lexical tokens

according to the syntax rules of the programming language.

It performs the parsing
process, as outlined above in

Sect. 2.3.3, repeatedly grouping together components by

performing reductions according to the production rules.

Assuming that the sequence of tokens is syntactically

correct, the parse should succeed. If the sequence is not

syntactically correct, then the syntax analyser should report

an error and then perform some appropriate recovery

action.

The syntax analyser constructs a data structure

representing the syntactic structure of the input. This is

usually based on some form of tree where the nodes

represent syntactic components defined by the grammar.

This is the parse tree or abstract syntax tree
. This data

structure should contain or link to all the information

needed by later phases of compilation. So, for example, a

node corresponding to the occurrence of a constant value in

the original program should contain or link to information

defining that constant such as its type, value and so on.

It is clear that the lexical and syntax analysers are doing

similar things. They are both grouping together characters

or tokens into larger syntactic units. So there is an issue

about whether a particular syntactic structure should be

recognised by the lexical analyser or by the syntax analyser.

The traditional approach, and it is an approach that works

well, is to recognise the simpler structures in the lexical

analyser, specifically those that can be expressed in terms

of a Chomsky type 3 grammar. Syntactic structures

specified by a type 2 or more complex grammar are then

left for resolution by the syntax analyser. In theory, the

syntax analyser could deal with the lexical tokens using a

type 2 grammar parsing approach, but this would add

significantly to the complexity of the syntax analyser.

Furthermore, by leaving the lexical analyser to deal with

these tokens improves compiler efficiency because simpler

and faster type 3 parsing techniques can be used.

2.4.3 Semantic Analysis
The analysis phase is not quite complete even after the

syntax tree has been constructed. Traditional type 2

grammars used to build the syntax analyser cannot deal

directly with contextual issues such as type checking,

declaration and scopes of names, choice of overloaded

operators and so on. This is the role of the semantic analysis

phase. Traversing the tree, inserting and checking type

information is done here. Typed languages may require that

all or almost all the nodes in the tree be labelled with a data

type. Complexity is increased when the language being

compiled allows user-defined types. Rules for type

compatibility have to be applied here too. For example, does

the language allow an integer value to be assigned to a real

(floating point) variable?

A second task of the semantic analysis phase is to flatten

the parse tree
to produce some form of intermediate code
.

The nature of this code is discussed in Chap. 6. It should be

straightforward to generate this intermediate code by

traversing the tree. The type information is preserved so

that the intermediate code is functionally equivalent to the

original source program. This intermediate representation

can be regarded as the machine code for a carefully

designed virtual machine.

2.4.4 Machine-Independent Optimisation
Generating intermediate
code by simple tree traversal will

yield code with opportunities for improvement. This

optimisation phase, together with the optimisation

performed during and after code generation, can make a

dramatic difference to the quality of the code generated by

the compiler. In Fig. 2.6 these phases are enclosed in

dashed lines, indicating that they are optional. The compiler

will still work without them, but the quality of generated

code may be poor.

Post-semantic analysis is a good stage of compilation for

code optimisation. The intermediate representation will

have been designed with optimisation in mind and many

optimisation techniques can be applied. These result, in

some cases, in dramatic performance improvements.

Removal of redundant code, function inlining, loop unrolling,

dependence and flow analysis and so on can all be done

here. This is a target machine-independent phase because

the optimisations being performed are making no

assumptions about the low-level design of the target

machine.

The output of this phase is a representation of the

program being compiled in an intermediate form. It is likely,

but not essential, that the input and the output of this phase

are expressed in the same intermediate representation.

2.4.5 Code Generation

At this point, attention shifts
away from the nature of the

source language and moves towards the design and

characteristics of the target machine. The code generation

phase reads the (optimised) intermediate code and outputs

functionally equivalent target machine instructions. This is

easy to specify but the implementation requires the

handling of complex detail.

The code generator has to select appropriate machine

instructions, decide how the target machine registers are to

be used, deal with a storage allocation scheme for all the

variables and structures needed by the program as it runs,

generate code to interface with libraries and the operating

system. This is all being done in the context of the need to

generate high-quality code.

2.4.6 Machine-Dependent Optimisation
At least partially incorporated into the code
generation

phase is the process of optimisation specifically geared

towards the characteristics of the target machine. Use of

special-purpose instructions and addressing modes, making

use of target machine parallelism, using the target machine

registers effectively and so on can make a significant impact

on the quality of the target code. There are some

optimisations that are best done as code is actually

generated, whereas there are other techniques that are best

run as a separate pass over the generated code.

There are some general issues concerning optimisation.

First, the term “optimisation” is used in the compiler context

in a somewhat unconventional way. It is not taken to mean

“generate the best code possible”, but instead it implies

“generate better code”. Furthermore, the aims of

optimisation need to be clear when developing the compiler.

Is the aim of optimisation to generate code that will run fast

on the target machine? Or is it to generate compact code

(maybe more appropriate for embedded systems)? Or is it

some combination of the two? Is the aim to minimise the

power consumption as the code runs? Managing these

tradeoffs may be difficult and the aims should be clear as

the optimisation phases are being developed.

The final output of the compiler is a program that can be

run on the target machine, maybe after some further

processing. The output may be some form of object file

requiring processing by a linker or loader before it can

actually run or maybe an assembly language file requiring

processing by an assembler to produce loadable target

code.

2.4.7 Symbol Tables
The names (identifiers, symbols) used in the source

program need to be stored during the compilation process.

Further information relating to types, scope, declarations,

values or locations and other source language-dependent

features will need to be stored too. This information allows

the compiler, for example, to ensure that variables are

appropriately declared, perform type checking, generate

appropriate intermediate code instructions and include

symbolic names in the code generator output to allow

symbolic debugging at runtime. Therefore, the symbol table

in a typical compiler is a complex data structure, supporting

efficient name lookup, accessible by any of the compilation

phases.

Symbols may be inserted into the symbol table by the

lexical analyser, but it may be better to perform this task in

the syntax analyser where more context information is

known. The syntax analyser can distinguish between the

declaration and the use of a name and this is important

when accessing the symbol table. The semantic analysis

phase makes heavy use of the symbol table, and it may

generate intermediate code that implicitly includes enough

of the symbol table information to allow the code generation

and optimisation phases to be free of the need to access the

symbol table.

2.4.8 Implementation Issues
Finally, there are many practical issues to consider in

designing the implementation plan of a compiler. In which

programming language should the compiler or interpreter

be written? What sort of testing strategy should be

adopted? Are there techniques to simplify the

implementation process? Are there good software tools to

use? Can we make use of software that is already freely

available by incorporating it in the compiler?

It may be that more software than just the compiler or

interpreter needs to be written. Is there a need for a runtime

debugger, linker or loader? Are there program development

tools needed to be integrated with the compiler? Do we

need a runtime system providing an interface between the

running compiled program and the operating system and/or

hardware? The task can easily get out of control but there

are many standard implementation routes, some of which

are examined in Chap. 9.

2.5 Conclusions and Further Reading
This chapter has shown that the design of the

implementation of a programming language is by no means

a trivial task but has also shown that the task may have

become tractable by imposing a solid structure on which an

implementation can be built. Good planning is vital in this

sort of project especially if a team is involved. Starting from

accurate definitions is essential. Formalising and automating

the process makes the production of a reliable

implementation so much more straightforward.

Compilers and interpreters are now very rarely

constructed from scratch. Making use of already available

software may well be crucial to make the project feasible.

The separation of the compilation process into clearly

defined modules and the use of standardised or pre-existing

interfaces makes this process of modular construction very

much easier.

This may be completely obvious, but it is worth stating

nevertheless. It pays to start off with an excellent, in-depth

knowledge of both the source language and the target

machine. Conversely, writing a compiler may be one of the

best ways to learn a programming language and a target

machine!

The documents formally defining programming

languages form a valuable resource for anyone involved in

the task of language implementation. Early language

definitions, such as the FORTRAN
standard [8], are well

worth examining to see how far we have come in both

programming language design and also in techniques for

programming language definition. The ALGOL 60

definition [1] is also a key historical document, particularly

for its use of BNF. It is also worth taking a look at the

definition of ALGOL 68
[4], again a key historical document

but it clearly shows the importance of having an accessible

language definition. The definitions of most more modern

languages are easily found on the web, some simple and

others of astonishing complexity.

Routes towards programming language implementation

are sometimes complex. This is usually and paradoxically

the case because of the need to reduce the amount of

programming effort required. Understanding the stages

required in such implementations is often difficult and T-

diagrams were introduced as a simple visualisation

mechanism [9, 10]. Deciding on whether to compile or

interpret is a key question and picking out the language

features (such as reflection in Java) that push towards an

interpreted implementation is a helpful task.

A great deal has been written about the design of virtual

machines (for example, see [11]) and documents easily

accessible via the web provide designs for general-purpose

and domain-specific virtual machines. The Java Virtual

Machine
(see [12]) is perhaps the most famous virtual

machine and has been used in the implementations of a

wide range of programming languages.

This is not a textbook about the more formal aspects of

grammars and parsing. There are so many high-quality

published resources in this area. A classic text is [13] and

much useful background information is contained in [14,

15].

Finally, an excellent source of design information is the

source code and documentation of existing compilers and

interpreters. For example, the GNU GCC project is well

documented and the compiler source code is freely

available. A good indication of the functionality offered by

the compiler is given by the range of options available when

running the compiler.

Exercises

2.1. The Java Virtual Machine has been used as a route to

the implementation of many programming languages.

Produce a list of some of these languages and

implementations. Why was the JVM often chosen? Are

there programming language features that do not

map well onto the JVM?

2.2. Suppose you had to write a program to count the

number of if statements used in a C program.

Explain why the obvious approach of counting the

number of matches with the character string “if” may

produce the wrong answer. Why can the use of lexical

analyser techniques help? Are aspects of syntax

analysis required too?

2.3. Write a program to read grammar productions

expressed in BNF or EBNF and generate random

sentences from the grammar. To make the sentences

more interesting it may help to be able to alter the

relative probabilities of choice where alternatives are

specified by the grammar.

Try this program on the grammar of a real

programming language and if possible put it through

a compiler for that language. Did you expect it to

compile?

2.4. Write the syntax of BNF in EBNF (and the other way

round).

2.5. Produce the grammar for a simple language

specifying conventional arithmetic expressions

involving integer constants, brackets and the four

binary operators +, -, * and /. Make sure that

expressions of the form 1+2*3 are interpreted

correctly by the grammar. Then extend the grammar

to allow the unary operators + and -. Make sure that

the grammar correctly interprets expressions of the

form -1-2. Maybe produce an implementation,

although this will be much easier once material in

later chapters has been read!

2.6. Produce a grammar for simple arithmetic expressions

with unconventional rules of precedence so that, for

example, the expression 3*2+1 is interpreted as 3*

(2+1).

2.7. Check how your grammar interprets expressions of

the form 1-2-3. Change the grammar to make all four

operators right-associative so that the value of 1-2-3

operators right-associative so that the value of 1-2-3

is 2 rather than -4.

References
1. Naur P (1960) Report on the algorithmic language ALGOL 60. Commun

ACM 3(5):299–314
[MathSciNet][CrossRef][MATH]

2. Jensen K, Wirth N (1985) Pascal user manual and report – ISO Pascal
standard, 3rd edn. Springer, New York
[CrossRef][MATH]

3. Jensen K, Wirth N (1975) The Pascal user manual and report, 2nd edn.
Springer, New York
[CrossRef][MATH]

4. van Wijngaarden A, Mailloux BJ, Peck JEL, Coster CHA, Sintzoff M, Lindsey
CH, Meertens LGLT, Fisker RG (1975) Revised report on the algorithmic
language ALGOL 68. Acta Inform 5:1–236
[CrossRef][MATH]

5. Winskel G (1993) The formal semantics of programming languages. The
MIT Press, Cambridge
[MATH]

6. Cooper KD, Torczon L (2011) Engineering a compiler, 2nd edn. Morgan
Kaufmann, San Francisco
[MATH]

7. Chomsky N (1956) Three models for the description of language. IRE Trans
Inf Theory 2:113–124
[CrossRef][MATH]

8. United States of America Standards Institute, New York (1966) USA
Standard FORTRAN – USAS X3.9-1966

9. McKeeman WM, Horning JJ, Wortman DB (1970) A compiler generator.
Prentice Hall, Englewood Cliffs

10. Terry PD (1986) Programming language translation: a practical approach.
International computer science series. Addison-Wesley Publishing
Company, Reading

11.
Wilhelm R, Seidl H (2010) Compiler design: virtual machines. Springer,
Berlin

http://www.ams.org/mathscinet-getitem?mr=134432
http://dx.doi.org/10.1145/367236.367262
http://www.emis.de/MATH-item?0089.12510
http://dx.doi.org/10.1007/978-1-4684-0261-2
http://www.emis.de/MATH-item?0592.68012
http://dx.doi.org/10.1007/978-1-4615-9984-5
http://www.emis.de/MATH-item?0296.68004
http://dx.doi.org/10.1007/BF00265077
http://www.emis.de/MATH-item?0317.68007
http://www.emis.de/MATH-item?0919.68082
http://www.emis.de/MATH-item?1058.68036
http://dx.doi.org/10.1109/TIT.1956.1056813
http://www.emis.de/MATH-item?0156.25401

[CrossRef][MATH]

12. Lindholm T, Yellin F (1997) The Java virtual machine specification. The
Java series. Addison-Wesley, Reading

13. Hopcroft JE, Ullman JD (1979) Introduction to automata theory, languages
and computation. Addison-Wesley Publishing Company, Reading
[MATH]

14. Aho AV, Lam MS, Sethi R, Ullman JD (2007) Compilers - principles,
techniques and tools, 2nd edn. Pearson Education, Upper Saddle River
[MATH]

15. Mogensen TÆ (2011) Introduction to compiler design. Undergraduate
topics in computer science. Springer, Berlin

http://dx.doi.org/10.1007/978-3-642-14909-2
http://www.emis.de/MATH-item?1209.68117
http://www.emis.de/MATH-item?0426.68001
http://www.emis.de/MATH-item?1155.68020

(1)

© Springer International Publishing AG 2017

Des Watson, A Practical Approach to Compiler Construction, Undergraduate

Topics in Computer Science, DOI 10.1007/978-3-319-52789-5_3

3. Lexical Analysis
Des Watson1

Department of Informatics, Sussex University,
Brighton, East Sussex, UK

Des Watson

Email: desw@sussex.ac.uk

It
is appropriate to start the details of compiler

implementation by considering the lexical analyser. The

place of the lexical analyser in the complete compiler has

already been discussed in Chap. 2. Because it is the first

phase of source code analysis, the format of its input is

governed by the specification of the programming language

being compiled. The output of the lexical analyser has to

satisfy the needs of the next phase of compilation (syntax

analysis) and details of this interface will be examined later

in this chapter.

Making a clear separation between lexical analysis and

syntax analysis is important. Regarding and implementing

them as separate modules has several advantages. It

increases the degree of modularity of the compiler—the

principles of software engineering emphasise that this is a

good thing. It makes the implementation easier with the

coding of the syntax analyser not having to worry about the

low-level details of the lexical structure of the source

mailto:desw@sussex.ac.uk

language. This is particularly noticeable when attempting to

produce a formal definition (for example, in BNF) of a

programming language to include lexical tokens, optional

white space between tokens, and so on. Implementation

from this inevitably complicated grammar may be difficult.

Furthermore, leaving the more complex syntactic structures

for the syntax analyser makes the coding of the lexical

analyser much easier. Debugging is helped by this

separation too. For example, if the examination of the

interface between the two phases indicates that the tokens

generated by the lexical analyser are correct, the problem

should lie in the syntax analyser. Finally, the separation can

offer benefits of efficiency since the algorithms used to

analyse tokens within the lexical analyser are simpler than

those used to analyse syntactic structures in the syntax

analyser. Simpler grammars, specifically Chomsky type 3

grammars, can be used to define the syntax of lexical

tokens. These efficiency gains in terms of both execution

time and space requirements may not be of paramount

importance for today’s hardware but they have certainly

influenced the historical development of compiler design.

This chapter examines two general approaches to lexical

analyser design, presenting some code examples and

highlighting some of the pitfalls. The first approach shows

how a hand-crafted lexical analyser can be structured by

following some simple guidelines. The second approach

follows a more formal path, starting with a syntactic

specification of the lexical tokens. This specification,

expressed in the form of regular expressions, can always be

transformed via the construction of finite-state automata to

the code for a lexical analyser. We concentrate on the

practicalities of lexical analyser construction, including only

just a little background theory.

These approaches have their individual advantages and

disadvantages and in some cases there are aspects of the

language being analysed that cause difficulty for both

approaches. The use of a specification based on regular

expressions forms the basis of a range of software tools that

can help greatly in the construction of a lexical analyser.

Writing a lexical analyser for simple languages usually

turns out to be a uncomplicated task. Code complexity is

low because the lexical analyser should not need to store

much state information as it runs. The analysis can usually

be done essentially in a single pass with very little or no

backtracking. However in a real compiler, efficiency may be

particularly important and this may influence the algorithms

used for lexical token recognition.

The lexical analyser is constrained by the syntax of the

source language and by the details of the stream of tokens

it has to pass to the next phase of compilation—the syntax

analyser. So it makes sense to look next at the nature of

these lexical tokens.

3.1 Lexical
Tokens
The role of the lexical analysis phase of a compiler is to read

the program being compiled, breaking up the input into a

sequence of tokens. Each token represents a basic syntactic

component of the language being compiled. For example, a

compiler for C would be recognising tokens such as reserved

words, identifiers, numerical constants, single character

tokens such as ‘+’, multiple character tokens such as ‘< =’,

strings, character constants, and so on. Some of the

characters read from the input can be thrown away by the

lexical analyser. For example, white space (spaces, tabs,

newlines, etc.) may, in most but not all circumstances, be

ignored. In general, comments can also be ignored.

3.1.1 An Example
Consider this fragment of a C program:

The lexical analyser would read this input combining

adjacent characters to form syntactically correct tokens,

ignoring irrelevant input and passing a stream of tokens to

the next phase of compilation. In this case, the tokens

generated would be

while (reserved word), (, i (identifier), =, 100 (integer

constant),), {, tot (identifier), +=, a (identifier), [, i

(identifier),], ;, i (identifier), ++, ;, }

This simple example raises some important issues.

For many programming languages, the lexical analyser

can easily distinguish between identifiers (or other

names) and reserved words
. This is because in these

languages the language specification simply lists a set

of reserved words (such as while in C) that cannot be

used as identifiers. We will look later at more awkward

languages where the rules are not so straightforward

and context has to be taken into account.

White space and comments have not been passed on as

tokens. It is tempting to say that white space and

comments are ignored but this is not strictly accurate.

There are circumstances where white space must be

used in order to separate tokens. For example, in the

declaration int a; the space character must not be

ignored. In other circumstances, such as a+1, white

space is not necessary to separate the tokens and if

white space appears, it can be ignored.

There are three cases here of two-character tokens

where there is potential for confusion in their

interpretation. These tokens are =, += and ++. We are

interpreting each of these to be single tokens although,

for example = could be considered incorrectly as

followed by =. Doing the work of combining these

character pairs in the lexical analyser rather than in the

syntax analyser makes good sense, and again, we will

be returning to this issue later in this chapter.

The lexical analyser makes no attempt to verify that this

example contains a well-formed while statement. The

lexical analyser does not need to worry whether the

stream of tokens it is generating is syntactically correct

because that is done later in the compiler. Beginners

often try to do too much in the lexical analyser and

attempt to include tests on the sequencing of tokens

that should be left for the syntax analyser. It is

important to realise the limits of the tasks of the lexical

analyser.

Hopefully at this stage the coding of a lexical analyser

should not feel too daunting and there may be a temptation

to tackle it straight away. However, there are some potential

pitfalls in the process and it is worth taking the time to

examine these before routes to implementations are

described.

3.1.2 Choosing the List of Tokens
When designing a lexical analyser the first task is to use the

specification of the input language to help produce a list of

all the lexical tokens that the lexical analyser should be

recognising, together with their (preferably formal)

definitions. The language definition is unlikely to provide a

neatly separated list of lexical tokens. The choice of tokens

is largely the responsibility of the language implementer.

As an example, here is an outline of a list of tokens for

writing a lexical analyser for C. Further detail is clearly

required.

Identifiers
, starting with a letter followed by an

arbitrary sequence of letters or digits or underscores,

such as a, Ab123, next_one.

Integer constants
, such as 12345. The C language

definition allows a wider range of integer constant types

such as octal (0123) and hexadecimal (0x12ff)

constants, and optional suffices to specify that the

constant is unsigned and/or long.

Character constants
also can take several forms. The

simple form is a single character enclosed between

single quote marks (’a’). Escape sequences can be

used (’

’) and characters can be expressed as octal

or hexadecimal values.

Floating constants too can be expressed in several

ways. The traditional representation is an integer part

followed by a full stop followed by a fractional part

(123.45), but an exponent can be added (1.234e10).

The type of the constant (float, double, long double,

determining its internal representation) can also be

specified.

String constants
are sequences of characters enclosed

by double quotes ("Hello"). There are also minor

complications here with the inclusion of escaped

characters within the string, the use of an extended

character set and the automatic concatenation of

adjacent strings.

The operator tokens are numerous but somewhat

simpler in structure. They take the form of a single

character (such as +, *, (, =, , ?) or a pair of characters

(, +=, ++, =) or in a few cases three characters

(..., =).

Keywords and reserved words
have special meanings in

the syntax of the language. Reserved words cannot be

used as identifiers. Examples from C include while, int,

if, typedef. Reserved words like these are assumed to

be keywords of the language. But some languages allow

keywords that are not reserved and it is the context of

their use which determines whether or not they are

being used as a keyword. This issue is discussed later in

this chapter.

Finally, although not tokens as far as the rest of the

compiler is concerned, comments
have to be parsed by

the lexical analyser so that they can be ignored. So, for

example, the lexical analyser recognises the pair of

characters /* and continues skipping the input until

encountering the character following the character pair

*/. Similarly, white space
(spaces, horizontal and

vertical tabs, newlines and formfeeds) can also be

ignored, except that it can be used to separate tokens.

In some respects, this list of tokens is simple. The

number of token types is comparatively small and none of

them appear to have a particularly complex syntax. But

there is complexity here and dealing with this detail can

cause serious implementation difficulties. This complexity

largely arises from the fact that C is a real programming

language, requiring extensive functionality and expressivity

for its use in diverse application areas. Other popular

programming languages are even more complex, even at

the lexical token level, and some of these complications will

be examined later in this chapter.

This complexity can be tamed by an understanding of the

detail, requiring access to an accurate and preferably formal

definition of the language. And this can help to achieve a

lexical analyser implementation that is well structured and

more likely to be correct.

In Chap. 2 the use of a Chomsky type 3 or regular

grammar for the specification of lexical tokens was

described. This results in a compact, clear and accurate

statement of the syntax of these tokens. But the key

advantage as far as we are concerned here is that there are

clear methods to take these formal specifications and

generate a lexical analyser directly from them, as shown

later in Sect. 3.4. This implies that there is considerable

benefit in ensuring that all the lexical tokens should be

definable in terms of regular expressions. For example, the

syntax of all the lexical tokens for C presented above can be

expressed in terms of regular expressions. More complex

syntactic structures and in particular nested structures

cannot be represented in terms of regular expressions and

are therefore not appropriate for handling within the lexical

analyser. Instead, they are tackled by the more powerful

analysis algorithms in the syntax analyser.

3.1.3 Issues with Particular Tokens
Once we have this list of lexical tokens, precisely defined,

we can prepare for an implementation by looking at some of

the things that can go wrong.

The
concept of an identifier or name is widespread in

programming languages. Often identifiers are described as

“starting with a letter, followed by a sequence of letters or

digits”. We need to know more. For example, we should ask

detailed questions about the programming language we are

trying to compile:

What is the set of characters that can appear in an

identifier? Is this set restricted for the first character of

the identifier? For example, does the language allow

underscore characters (_) in an identifier and can that

character appear at the start of an identifier? Can

characters from an extended character set such as

Unicode appear? Is white space allowed in an identifier?

What about the case of letters? Are both upper and

lower case letters allowed? Are upper case letters

translated automatically to lower case (or vice versa),

making identifiers such as ABC123 and Abc123

equivalent?

Is there any limit on the length of identifiers? This will

have an effect on the way in which identifiers are stored

within the compiler. For example, the rules may state

that “an identifier can be arbitrarily long but only the

first six characters are significant”, implying that, for

example, abc123x and abc123y are both allowed but are

equivalent.

Context sensitivity issues arise in a lexical analyser when

the nature of a lexical token may depend not only on its

composition in terms of characters but also on its context.

For example, in C, identifiers declared by the typedef

declaration
may need special treatment in the lexical

analyser. Suppose t is defined as

and later in the program the code fragment (t*)

appears. This is valid in C, being a type cast operation. One

would expect the lexical analyser to return the tokens open

bracket, identifier, asterisk, close bracket and these tokens

would be dealt with appropriately by the syntax analyser.

But the grammar of C could also interpret this sequence of

tokens as a malformed expression (a multiplication without

the second operand). To avoid this ambiguity, the lexical

analyser may be expected to return the token type identifier

instead of identifier when t has already been defined in a

typedef declaration. And to do this, there must be some

communication back from the lexical analyser to the syntax

analyser to allow the lexical analyser to determine the

nature of t. This is messy, and it is a consequence of the

way in which the C grammar is defined. We will revisit this

problem in Chap. 5.

Integer and floating point constants may appear fairly

straightforward but there are some important issues to

address.

Check the syntax, and ensure that all possible forms of

numerical constants are being dealt with appropriately.

It depends on the details of the language being

analysed but handling a leading + or - as being part of

the constant is rarely a good idea. If the language allows

hexadecimal constants, are there restrictions on the

case of the letters a to f?

Are there restrictions on the length or numerical range

of constants? Are both 1 and 123456789012 acceptable?

Is there a rule which says that there is a limit on the

range of integer constants, but if an out of range

constant is input, there should be an automatic

conversion to floating point format. And this leads

Reading and analysing numeric constants for most

languages will require lookahead. For example, the input

of 12345678.1 will require 12345678. to be read before

the lexical analyser can determine whether this is an

integer or a floating point number. This issue is

examined later in this chapter when implementation

techniques are described.

If there is a limit on the range of integer constants then

the lexical analyser should really check for out of range

constants. For example, Java specifies that the largest

integer literal is 2147483648 (that’s) when preceded

by a unary minus and 2147483647 () otherwise.

Code to check this in a lexical analyser is not trivial.

Floating point constants may have a more complex

syntax with a range of alternative representations.

Writing a recogniser by hand may be hard work so

generating recognising code automatically from a

formal specification may be an easier and safer route.

The operator tokens are often just single characters and

pose little difficulty. But with multi-character operator

tokens, the lexical analyser recognising code has to

combine the characters as appropriate. So, for example, the

input =
 should be, if that is what the language

definition says, a single “less-than-or-equal” token rather

than a “less-than” token followed by an “equals” token. But

with the input =
 (with a space between the two

characters), does the space force the recognition of two

separate tokens, or is the space ignored? The language

definition should tell you.

Keywords and reserved words
should be fairly easy to

deal with. Again, does the case of the letters matter? In

languages where all keywords are reserved words (where

identifiers and reserved words cannot be confused), they

can be dealt with by the lexical analyser regarding them as

special cases of identifiers—read a token that can be an

identifier or a reserved word and consult a table of reserved

words to determine whether or not the string is a reserved

word. If instead a lexical analyser is being written for a

language where a keyword can be an identifier in certain

contexts, then the identity of the keyword must be passed

on to the syntax analyser where context information is

available and a decision on the nature of the token can be

made.

Comments appear in programming languages in a wide

variety of forms. Some languages support comment

markers where the marker and all that follows to the end of

the line can be ignored. Comment brackets are also often

found, where the comment is enclosed between a pair of

matched tokens. In theory these comment brackets could

support the notion of nested comments but this rarely

offered, for good reason: if the syntax of lexical tokens is

being specified in terms of a Chomsky type 3 grammar, then

nested/recursive lexical structures cannot be supported. For

example, comments in C cannot be nested and it may be

helpful for the lexical analyser, on encountering the

character sequence /* within a comment, to issue a

warning. This does not immediately indicate a C syntax

error, but may be a useful warning and help the resolution

of trouble ahead.

Can comments be inserted anywhere in the source

program? Some languages may impose restrictions by

stating that a comment should be replaced by a single

space character in the lexical analysis process. For example,

in C, is verylong/* comment */identifier = 0; valid?

Some language implementations support special

comments having a particular syntax with the purpose of

controlling compilation options. For example, the

programming language and/or implementation may support

a form of comment that tells the compiler to turn on or off

the generation of special code to perform array bound

checking in that selected part of the source program.

Representing these special comments as lexical tokens and

passing them on to later stages of compilation is the

appropriate action.

The role of white space is not the same in different

programming languages. In some languages, white space

can largely be ignored and this is trivially done in a lexical

analyser. But there may be contexts, such as in character

strings, where it would be wrong to ignore white space.

White space is often used as a token separator or

terminator.

In other languages, white space has a syntactic

significance. For example in Python the indentation (i.e.

white space at the beginning of a line) denotes block

structure, in a similar style to the { and } tokens of C.

Indenting starts a block and unindenting ends it:

The lexical analyser can deal with such indentation by

noting whenever there is a change in indentation level and

generating appropriate “start block” and “end block”

tokens.

3.1.4 Internal Representation of Tokens
Now that the constraints placed on the lexical analyser by

the syntax of the source language have been outlined, it is

time to look at the structure of the stream of tokens it has to

pass to the next phase of compilation—the syntax analyser.

For each token read by the lexical analyser the syntax

analyser has to be able to determine the token’s identity (it

is a numerical constant, an identifier, a plus symbol and so

on) and in the case of some tokens, the “value” of the token

(the value of the numerical constant, the string of

characters making up the identifier, etc.). A simple approach

which fulfils these requirements is to represent tokens by

their type or identity together with a string containing the

characters of the token. The technique used to represent

the identity of the token depends on the features offered by

the implementation language. This could be some sort of

enumerated type or symbolic constant, typically resulting in

an integer value being used to specify the identity of the

lexical token. Including this identity information in the data

structure representing the token is important because it

saves the syntax analyser from having to re-analyse the

string representations of the tokens.

The handling of constants, particularly numerical

constants, needs special care. On recognising a numerical

constant, the lexical analyser has to return an indication of

the type of the constant (integer constant, floating point

constant, etc.) together with the value of the constant. The

obvious way of returning the value is for the lexical analyser

to convert the string of characters representing the constant

into a standard binary form (for example, a 32-bit or maybe

64-bit 2’s complement integer or a 32 or 64-bit IEEE 754

floating point representation), passing it on to the next

phase of compilation. However, in some circumstances, this

approach may be inappropriate. Consider a compiler for a

language whose definition states that the integer constant

range is determined by the architecture of the target

system, and the target system uses 64-bit integers. If the

compiler is running on a 32-bit machine, the lexical analyser

would have to make special provision to pass 64-bit integers

to subsequent phases of compilation. In particular the

lexical analyser’s code would be affected by the architecture

of the target machine. But in Chap. 2 we saw the huge

benefits of having a target machine-independent front-end.

An easy resolution is to delay the conversion of the text

representation of the constant into some binary internal

form until much later in the compilation process, where

target machine dependencies are already being dealt with.

So numerical constants can be returned from the lexical

analyser represented as a pair—the type of the constant

and its text (string) representation.

Conversion from a text representation to a binary

representation is fairly easy for integers, but accurate

conversion of floating point values is much harder [1, 2].

The compiler uses the symbol table to store information

about identifiers. So it is important to consider whether the

lexical analyser should have the responsibility for placing

identifiers into the symbol table. To some extent this is an

issue influenced by the design of the source language. But

in practice the manipulation of symbol table data is only

feasible when full context information is available, for

example distinguishing between the appearance of an

identifier in a declaration and its appearance in an

expression. This is most easily done later in the compiler,

typically in the syntax analyser.

Source line numbers can be included in the data returned

by the lexical analyser. This is easy to do and can make the

later production of accurate and helpful error messages

much easier.

3.2 Direct Implementation
The previous section outlined the nature of lexical tokens in

the source language and made suggestions about the

representation of tokens emitted by the lexical analyser. To

construct a correct and reliable lexical analyser, we need

some structure on which to hang the details of the analysis

of individual token types. We also need a clear and

unambiguous definition of the structure and meaning of

each lexical token.

This is a practically oriented book about compiler

construction with the aim of presenting techniques that will

work. There are then two broad approaches to lexical

analyser construction. The first is essentially just to tackle

the problem directly by coding in an appropriate

implementation language. Code is written that reads the

input, matches strings according to the syntax of the lexical

tokens and passes those tokens on. The lexical analysers in

many compilers are written in this way. The second

approach takes a more formal view of lexical tokens by

working directly with the syntactic definition of the tokens,

expressed as regular expressions. Later in this chapter, we

will see how regular expressions can be converted into

recognising code, thus forming the main part of the lexical

analyser. This transformation from regular expressions to

code is best performed by software and there are now many

lexical analyser generator packages available, enabling a

complete lexical analyser to be generated from a formal

specification of the tokens. The use of these tools is

described in Sect. 3.4. Hybrid approaches are of course

possible too, where part of the lexical analyser can be

written by hand and the rest generated from formal

specifications (such as the code to recognise more complex

lexical tokens).

We look first at a direct implementation of lexical

analysers by programming them from scratch and we start

with a plan for an overall structure.

3.2.1 Planning a Lexical Analyser
It is convenient to regard the lexical analyser as a function

(or procedure or method), callable by the syntax analyser.

This enables the syntax analyser to call for the next token

from the input. A natural approach to the source code

analysis is to read the entire source file into a buffer directly

accessible by the lexical analyser and then make maybe

multiple passes over any part of the buffer to determine

where each token starts and ends, in effect tokenising the

entire input. This demands the allocation of a buffer

sufficiently large to hold the entire source program together

with another buffer to hold the identities of all the tokens.

Having the entire source program directly available makes

tokenising and error reporting somewhat easier. The more

common alternative is for the lexical analyser to read

characters from the input as they are required. In the

discussion that follows we will assume that we are following

this conventional approach. Each time the lexical analyser is

called it will examine characters from the input. Once the

identity of the token has been recognised, the lexical

analyser can read to the end of the token, storing it for

return to its caller. It returns the identity of the token and

where appropriate the text of the token itself, and is then in

a state ready to accept the next call.

Turning now to a practical example, we can start the

design of a lexical analyser for the DL
language described in

the appendix. Our C implementation of this lexical analyser

has the following characteristics:

The set of possible lexical tokens returned by the lexical

analyser is defined as an enum type, and so an individual

token is represented as an int value, returned by the

lex function.

To make the code a little simpler, the lexical analysis

function, lex, returns a single integer value rather than

a structure containing in addition the source line

number and the string representation of the token. The

only tokens that require additional information to be

passed on to the next phase of compilation are those

representing identifiers and numeric constants. We can

achieve all we need here by maintaining a couple of

global variables, one storing the string representation of

the last identifier read (identifier) and the other

storing the last numerical value read (ival).

To make the coding of the lexical analyser manageable,

we will make use of a one character lookahead
. Here,

we adopt the rule that each time the lexical analyser is

entered via the lex function, the next character of the

input to be analysed has already been read and is

stored in a global variable. This removes the need for

backtracking in the lexical analyser and makes its

coding very much simpler.

So the key declarations in our lexical analyser look

something like this:

The definition of the constant MAXIDLEN provides an

upper limit on the length of an identifier and makes it

possible to use fixed length arrays for identifier storage (we

are assuming that DL allows us to place some

implementation restriction on identifier length). The enum

declaration lists the complete set of lexical tokens. The

order is not significant, neither is the actual assignment of

names to integer values which is done automatically. The

code for the function doing the lexical analysis (lex())

appears later. This is just the prototype declaration

indicating that the function takes no arguments and returns

an lextokens result, selected from the values declared in

the enum type declaration. Finally we have the global

declarations for the last identifier read and for the single

character lookahead.

3.2.2 Recognising Individual Tokens
The next step in the coding of a lexical analyser by hand is

to tackle the recognition of the individual token types. On

entry to the lexical analysis function, the global variable ch

contains the next character to be analysed and it will

typically be the first character of the next token to be

returned.

3.2.2.1 White Space

In DL, white space
(spaces, tabs, newlines) can be inserted

freely between lexical tokens. So the first action of the lex

function has to be to skip over these white space characters

so that ch contains a “significant” character:

For the majority of programming languages it is not

feasible nor sensible to rely on the existence of white space

to separate all tokens.

3.2.2.2 Single Character Tokens

At this stage, the value of ch will determine, but not quite

uniquely, the nature of the token being recognised. So the

main body of the lex function consists of an

if .. then .. else if .. then .. else if ...

structure or a

switch .. case .. case ...

construct. In this implementation, we will use the switch

statement.

Many of the lexical tokens of DL are single characters, so

the next step is easy:

Note the use of ch = getchar(); to maintain the one

character lookahead before exiting from the lex function.

But there is no need for lookahead after finding end of file

because there are no further characters left and the lexical

analyser can assume that the rest of the compiler will not

attempt to call lex again after the input has all been read. If

lex is called again, it will just return end of file again. Also,

note that the code to deal with the token ’/’ will need to be

redesigned because the character / can start a comment.

This is dealt with in Sect. 3.2.2.6.

3.2.2.3 Other Short Tokens

Looking at the syntax specification for DL, it is easy to see

that there are a few more single character tokens, but since

they can also start a double character token, the

recognising code has to be slightly more sophisticated.

Specifically, we have to deal with the tokens , =, , =, ==,

 = and !=. The one character lookahead helps here.

Looking first at the code to recognise and =, it can be

seen that once a character is found, the next character is

read and if it is not = there is no need to call getchar()

again because the lookahead has already been done. The

code for recognising != is very similar, except that we know

that a = character must directly follow the ! character. The

code here complains if the = is not found and an error token

is returned for the pair ! and the character following it (not

=). Note that white space between the two characters is not

allowed.

3.2.2.4 Identifiers and Reserved Words

The
order in which tokens are recognised is not particularly

important. We can tackle identifiers and reserved words

next.

Identifiers and reserved words in this language have to

start with a lower case letter but can continue with lower

case letters or digits. The string of characters of the

identifier or reserved word is accumulated in the array

identifier and there is a simple check for string equality

with the various reserved words of DL. When there are many

reserved words to check it would make sense to use a more

efficient algorithm to determine whether a string is a

reserved word, but this approach is fine for now. Note that

upper case letters do not feature at all in DL. The identity of

the lexical token just recognised is stored in the variable

lextoken and this value will be passed back to the caller as

the result of the call to the lex function.

In this code, identifiers longer than MAXIDLEN characters

are silently truncated. This may not be a sensible or correct

thing to do in all circumstances.

3.2.2.5 Integer Constants

In
a first attempt, integer constants are handled in a

standard way by converting a stream of decimal digit

characters into a binary internal int representation:

It would also be possible to use the C library function

atoi by passing it a string of the decimal digit characters

accumulated in an array, just as was done in the case of

reading an identifier. Recall that ival is a global variable

containing the value of the last integer constant read.

However, there is an important problem here. What

happens if the number read by this code is larger than can

be represented in an int variable in C, our compiler’s

implementation language? And how does this interact with

any limits placed on the maximum value of an integer in

DL? This issue was introduced in Sect. 3.1.3 and the

resolution requires knowing the language’s specification.

Some languages specify that numerical limits are

implementation-defined, probably influenced by the

architecture of the target hardware. In this case, since there

are advantages in making the compiler’s front-end target

machine independent, it would be sensible to delay the

conversion of the string representing the number into some

internal binary form until later in the compilation. So the

lexical analyser can return a character string representation

of the number. But let us assume in this case that the upper

limit of an int value in DL is the same as the upper limit

imposed by the use of C as an implementation language.

We can then use code of the form:

The constant INT_MAX contains the maximum value that

can be stored in a C integer and the C standard header file

limits.h defines this value. Note that an attempt to check

for overflow by including code of the form

is not correct and may give unexpected results. In this code

a constant token is returned even if overflow is detected.

This may not be the right thing to do even though an error

message is generated.

In some languages and implementations based on 2’s

complement arithmetic, the absolute value of the largest

negative number is likely to be larger than the largest

positive number. This may need care both with the

interpretation of the language definition as well as with the

implementation.

Handling overflow like this in the lexical analyser is not

always the right thing to do. Some languages make explicit

statements in their definitions about size limits on constants

and under those circumstances performing the checks in the

lexical analyser is sensible. But particularly with languages

where limits are implementation-defined, it makes more

sense to delay the checking and conversion of constants

into some machine-dependent form until much later in

compilation.

3.2.2.6 Comments

The
DL language supports comments bracketed by /* and

*/. The general strategy to skip comments in the lexical

analyser is straightforward (ignore everything between the

comment brackets), but coding this may need some care,

particularly to maintain the one-character lookahead. To

deal with comments in DL, the code to handle the / token

can be modified:

Once the / character has been found, a comment starts

if the following character is *. The variable incomment is set

to TRUE. The comment is ended if the end of the input is

detected (and a warning is output) or if the closing

comment bracket is found. When the while (incomment)

loop exits after finding the closing comment bracket, ch

contains the character immediately following the comment,

ready for a recursive call to lex. This call will return the

lexical token following the comment.

This code does not and should not handle nested

comments, so that the lexical analyser will deal with input of

the form:

by treating the input as a comment terminated by the

first */ and then returning a multiplysym and then a

dividesym.

3.2.2.7 Errors

In
the code examples above, there are three occasions

where the lexical analyser is directly outputting an

error/warning message. This is unlikely to be an acceptable

strategy when the lexical analyser is integrated within the

complete compiler.

The lexical analyser can detect a number of errors such

as reading an unexpected character, not in the alphabet of

the language. Clearly such errors have to be communicated

to the user of the compiler. But also, the compiler has to

recover from the error so that the analysis of the input can

continue. The actions taken by this recovery may depend on

the syntactic context of the error. The syntax analysis phase

of the compiler has to deal with error reporting and error

recovery and so it is sensible to allow the syntax analyser to

deal with errors detected by the lexical analyser too. A

conventional way of doing this is to pass back a special

lexical token when an error is detected, and the syntax

analyser can then handle the error. For example, if our

lexical analyser encounters a character not in DL’s alphabet:

Once the syntax analyser has been integrated with the

lexical analyser and is dealing with errors satisfactorily all

the fprintf(stderr...) calls can be removed. But they

should stay while the lexical analyser is being developed

and debugged.

3.2.3 More General Issues
The last section has illustrated how a simple enclosing

structure containing individual pieces of code to deal with

each of the lexical tokens can be developed. But to produce

a lexical analyser for a real language requires further design

decisions and careful attention to coding details.

In the example code above, a one character lookahead

simplifies the programming. For example, analysing the

input 123+ starts with the character 1 having already been

read. This leading character indicates that an integer

constant has just started. The 2, 3 and + characters are read

and the existence of the non-numeric + indicates that the

numeric string has ended. The number 123 can then be

returned, but the character + has already been read, ready

for the next call to the lexical analyser. Even for this simple

language DL, more lookahead is sometimes required. For

example, to distinguish the token types of print and

print1 (reserved word and identifier) requires several

characters to be read and analysed. Storing the whole of an

identifier or reserved word in an array of characters

simplifies this process. Similarly, if the lexical analyser

detects an overly large constant, at least part of the

constant has to have been read before being able to make

that decision.

Even for more complex languages it should be possible

to use the first character of the token (the character used as

the switch expression) as a fair indicator of the identity of

the complete token. This suggests that structuring the

lexical analyser as a large switch statement is probably a

good idea. And as already advised, starting off with a

comprehensive list of token types makes the

implementation easier.

In this section various constructs from popular

programming languages are examined to see how they may

influence the lexical analysis process.

3.2.3.1 Identifiers and Reserved Words

The
syntax of identifiers and reserved words/keywords is

easy to specify and the rules have to be followed in the

lexical analyser. Issues which sometimes cause mistakes

include:

Are upper case and lower case letters equivalent? Do

the identifiers ABC and abc refer to the same thing?

If the language has keywords or reserved words, is the

case of letters significant? Are while, WHILE, While and

whilE all the same keyword or reserved word?

Is there a limit on the length of an identifier, and are all

characters significant?

Is white space allowed within an identifier?

In some cases, the language specification may use the

term “implementation-defined”. The C language treats at

least the first 31 characters of an internal identifier to be

significant [3]. Java and Python allow identifiers of unlimited

length. Fortran 90 allows identifiers up to 31 characters

long, they are case-insensitive and Fortran keywords can be

used as identifiers, although not recommended for readable

programs. Allowing arbitrarily long identifiers requires some

sort of dynamic data structure for the storage of the

characters of the identifiers.

The lexical analyser clearly needs access to a data

structure containing the language’s keywords so that

keywords can be identified and returned as keywords,

identifiers or reserved words as appropriate. Rapid lookup is

desirable to help maintain compilation efficiency and some

compilers use part of the symbol table for this purpose.

Hash tables are often used.

3.2.3.2 Numerical Constants

The
issue of size limits on integer constants has already

been covered. The complexity of the analysis code is further

increased by having to deal with a wide range of numeric

constant types supported by most programming languages.

For example, ANSI C allows integer constants expressed in

various forms: decimal, octal (if the number begins with a

zero), hexadecimal (if preceded by 0x or 0X), unsigned

(followed by u or U) or long (followed by l or L). Floating

point constants have a more complex syntax and require a

systematic approach to the coding of their lexical analysis

otherwise messy and unreliable code results. It is sensible to

disconnect the reading and analysis of a numerical constant

from its conversion to an internal binary form. The lexical

analyser can pass on a string representation and the

conversion is done later in compilation. Care has to be taken

with this conversion process, particularly for floating point

values, to maintain accuracy [2].

3.2.3.3 Testing

Writing a compiler can be a huge task, requiring a good

grasp of the principles of software engineering. Testing

should of course be a key aspect of the project. Beginners to

compiler writing often fall into the trap of inadequate

testing. They will start a compiler construction project,

perfectly reasonably, by coding a lexical analyser, but only

testing it on a handful of small test programs. Then the

syntax analyser is coded and much time is wasted in

attempting to debug the syntax analyser while, in fact, the

problems are caused by problems with the lexical analyser.

The lexical analyser should not be overly difficult to test,

but the testing has to be systematic and thorough. Write a

trivial main program that repeatedly calls the lexical

analysis function until end of input is detected. The main

program can output the identity of the token returned at

each call. Making use of a large library of test programs as

input to the lexical analyser is a good first step. The lexical

analyser must also be tested with erroneous input such as

test programs with carefully crafted syntactic errors,

random data, files containing non-text data, and so on.

Limiting cases are essential too. For example, identifiers just

shorter than the length limit, at the limit and just over the

limit can help reveal “out-by-one” errors.

Such testing with random data can also highlight

problems with error handling. The lexical analyser should be

capable of dealing with any input and report error tokens

when necessary. The next phases of compilation can

produce helpful error messages for the user and recover

appropriately.

3.2.3.4 Difficult Languages

Most programming languages include some “features” that

pose particular problems for the lexical analyser. For

example, there are some languages where distinguishing

between keywords and identifiers can only be done by

examining the context in which they are used. A nightmare

example is the PL/I
language where the language’s

keywords are not reserved words, allowing statements of

the form

IF THEN THEN THEN = ELSE; ELSE ELSE = THEN.

Similar difficulties arise in FORTRAN
where white space is

in general insignificant. A famous example of the difficulties

this causes is

DO 5 I = 1,10

compared with

DO 5 I = 1.10

The former starts a DO loop iterating to statement

number 5 and the latter sets the value of the variable DO5I

to the value 1.10.

Dealing with these awkward cases is not easy. Some form

of lookahead is essential here, and practical solutions may

have to resort to multi-pass lexical analysis. Fortunately

languages requiring such treatment are becoming less

common.

3.2.3.5 Evaluation

Implementing a lexical analyser in the direct way outlined in

this section has much to recommend it. The overall

structure of the lexical analyser is intuitive, with clear

separation between the sections of code dealing with each

individual token. The code for most tokens seems

straightforward. However, some aspects of the design of

most programming languages can cause implementation

difficulties and may require annoying-to-program lookahead.

Furthermore, some lexical tokens may have a complicated

syntax (the floating point number is the often-quoted

example) and ensuring that the hand-written code dealing

with these tokens is reliable may turn out to be a taxing

task.

To make dealing with these complex tokens easier, a

more structured approach to lexical analysis is needed. This

approach is described in the next section. We need a way of

generating a formal specification of the syntax of the tokens

and then transform that specification into recognising code.

The more that this process can be automated the better.

3.3 Regular Expressions
In
Chap. 2 we saw how Chomsky type 3 (finite-state or

regular) grammars have a special significance for lexical

analysis. We aim to specify the syntax of lexical tokens in

terms of a finite-state grammar and then somehow

transform that specification into the actual code for the

lexical analyser.

3.3.1 Specifying and Using Regular
Expressions
Regular expressions arise from Chomsky type 3 grammars.

A Chomsky type 3 grammar has productions of the form:

 or

Directly expressing the syntax of lexical tokens using this

formulation is not really a practicable task. Instead, we use

a different notation that is formally equivalent to a type 3

grammar expressed using productions of the form shown

above. This notation makes use of regular expressions.

A regular expression is made up of symbols of the

language being defined together with operators that

support:

concatenation (traditionally specified by symbol

adjacency in the regular expression),

alternation (symbols or groups of symbols are separated

by the | operator) and

repetition (symbols or groups of symbols are followed by

the operator to signify zero or more repetitions).

Parentheses can also be used to group symbols.

Conventionally, the repetition operator has highest

precedence, followed by concatenation, with alternation

having the lowest precedence.

For example:

abc denotes the set of strings with the single member

.

a|b|c denotes the set .

 denotes . is the empty string.

 denotes the infinite set .

 denotes the set of strings made up of zero or more

a’s or b’s.

 denotes the set of strings including

.

Regular grammars and regular expressions are

equivalent in the sense that a language expressed in one

can be transformed to the same language expressed in the

other. Note also that a specification in terms of a regular

expression is not necessarily unique. For example a(b|c) and

ab|ac are equivalent regular expressions.

The regular expression notation is simple yet powerful. It

is compact and unambiguous. And it is well-suited to the

specification of the syntax of lexical tokens. For example, we

can define an integer constant as follows:

digit

intconstant digit digit

Similarly, we can define an identifier as an initial letter

followed by a sequence, possibly empty, of letters or digits:

3.3.2 Recognising Instances of Regular
Expressions
Transforming a set of regular expressions into code that

recognises instances of those regular expressions is our aim.

We start with a set of regular expressions defining the

syntax of all the lexical tokens of our language and then

transform the regular expressions into recognising code,

yielding the basis of a complete lexical analyser.

Suppose we wish to recognise instances of the regular

expression . This regular expression can be

expressed in the form of a syntax diagram, as shown in

Fig. 3.1.

Fig. 3.1 Directed graph representation of

Generating this form of directed graph
from a regular

expression is uncomplicated (it is just a different way of

presenting the regular expression) and by following the

arrows, the graph can be used to generate instances of the

regular expression. But we really have the reverse problem:

that of using this graph to parse strings to determine

whether they are capable of being generated from the

regular expression. It turns out that this is possible and an

algorithm described in [4] can be used. Unfortunately this

algorithm proves to be too inefficient for practical lexical

analyser construction, particularly for complex regular

expressions. A different approach is needed.

3.3.3 Finite-State Machines
The
directed graph presented in the previous section is ideal

for generating instances of the regular expression but not so

good for recognising instances. An alternative structure is

needed. This is the transition diagram which is another

directed graph but with labelled branches. The transition

diagram for the regular expression is shown in

Fig. 3.2. Each node in the transition diagram is called a

state. One or more states are enclosed in double circles to

signify they are accepting states.

Fig. 3.2 Transition diagram for the regular expression

In this form of transition diagram there is a unique

starting state
(state 1 in Fig. 3.2). In this simple example

there is just one accepting state (state 3). Each edge or

transition in the diagram is labelled with a character. These

characters are matched with characters read from the input

during the recognition process.

To illustrate the actions of this finite-state machine while

operating as a parser for strings from the regular

expression, we consider the input abccd.

Start in state 1. Read a. Find the edge labelled a from

state 1 and follow that transition. Move to state 2.

Read b. Move to state 1.

Read c. Stay in state 1.

Read c. Stay in state 1.

Read d. Move to state 3.

Because we end in an accepting state, the parse has

succeeded, showing that abccd is an instance of the

regular expression represented by this finite-state

machine.

This approach provides an efficient parser for instances

of regular expressions. The time complexity is clearly O(n)

where n is the number of characters in the input—the cost

of parsing tends to grow linearly with the length of the

input.

If erroneous input is input to this machine, the actions

are different. For example, consider the input ad.

Start in state 1. Read a. Move to state 2.

Read d. There is no edge labelled d from state 2, so an

error is reported. Usefully, the error message can

provide the information that a b was expected at this

point.

The transition diagram can be represented in other ways.

In particular, representing it as a transition table may be

helpful. Figure 3.2 can be represented as:

This is looking encouraging. Representing regular

expressions as finite-state machines allows efficient parsing,

and the code of the parser is simple, controlled by a

directed graph or a transition table. Assuming that it is

manageable to transform regular expressions into finite-

state machines, this approach looks as though it might be a

good, practical route for the implementation of lexical

analysers.

To give an overview of the process of going from regular

expressions to finite-state machines, we need to examine

the characteristics of a finite-state machine a little more

carefully. The finite-state machines described so far in this

section are called deterministic finite-state machines

because they have the characteristic that for any state,

there is at most one possible next state for each input

symbol. In other words, the entries in the transition table

are either empty or contain a single next state. No two

edges from a node representing a state can be labelled with

the same input symbol. These machines are contrasted with

non-deterministic finite-state machines where an input

symbol can trigger the machine into more than one next

state simultaneously. There may be states having two or

more edges labelled with the same input symbol. A non-

deterministic finite-state machine can also have multiple

starting states. The inherent parallelism of these machines

clearly causes implementation difficulties. However they are

important because there is a straightforward algorithm for

transforming a regular expression into a non-deterministic

finite-state machine.

There are several steps in this implementation process.

Start with the regular expression. This can be

transformed into a non-deterministic finite-state

machine.

Because the implementation of a non-deterministic

machine is complicated and potentially inefficient, the

non-deterministic finite-state machine is transformed

into an equivalent deterministic finite-state machine.

The deterministic finite-state machine thus generated

may well have many more states than strictly

necessary, and a process of state minimisation is

performed to ensure that the machine is the simplest

possible for the parsing of instances of the original

regular expression.

These algorithms will not be detailed here. They are

standard, well-understood algorithms described on the web

and in many textbooks. For example, see [5].

This results in a powerful process for the construction of

a lexical analyser. The syntax of the individual tokens is

expressed in terms of a set of regular expressions, these

regular expressions are transformed into state-minimised

deterministic finite-state machines which can then be

implemented by transforming the finite-state machine into

code. This results in an efficient lexical analyser. The

resulting lexical analyser has implementation issues that

have to be considered, particularly concerning the

representation of a potentially large but sparse transition

matrix, but these issues can be overcome without too much

difficulty.

Unfortunately, this process is really not appropriate for

carrying out by hand. The individual steps may appear

simple but as soon as there is any complexity in the regular

expressions, the detail becomes overwhelming and it is very

hard and time-consuming to produce a lexical analyser with

any hope for correctness. On the other hand, carrying out

this process by machine is a much more attractive

proposition and there are now many software tools that are

capable of generating lexical analysers, in a wide variety of

implementation languages, starting from a set of regular

expression specifications. And this gives us a second,

practical approach to the construction of lexical analysers

with the key advantage of being able to handle arbitrarily

complex regular expressions, generating recognisers that

are likely to be correct as well as efficient, using little human

effort.

3.4 Tool-Based Implementation
Techniques for the automated production of lexical

analysers are not new. The Unix-based program lex was

described in [6] and became very popular soon after its

introduction, being used for a wide range of applications,

not all by any means in the field of compiler construction.

Lex takes as input a set of regular expressions defining the

tokens, each being associated with some C code indicating

the action to be performed when each token is recognised.

The output of the lex program is itself a C program that

recognises instances of the regular expressions and acts

according to the corresponding action specifications.

Many descendants of lex were then developed,

generating code in a wide variety of languages. Tools such

as flex [7] (again, generating C) and JLex (generating Java)

have become very popular. Most of these tools share a

largely common format for the specification of the regular

expressions. Other compiler-construction tools combine

lexical analyser generation with syntax analyser generation

and maybe other compiler phases too.

These software tools have been refined over the years so

that they are now capable of generating very efficient

lexical analysers, in terms of both execution time and

runtime storage requirements, with minimum effort from the

programmer. They often contain functionality which

addresses many of the irritating practical difficulties of

lexical analysis.

3.4.1 Towards a Lexical Analyser for C
As an example of the use of software tools for the

generation of lexical analysers, this section examines the

use of the flex tool, ending with its use in constructing

various parts of a lexical analyser for the C language.

Although lexical analyser generating tools are large and

complex pieces of software, their use is not difficult. For

example, flex takes as input a specification file that contains

amongst other things a set of regular expressions, each

associated with a corresponding piece of C code. These are

the rules which specify the actions of the lexical analyser.

Flex will generate C code defining a function yylex(). This

is the lexical analyser itself and it is subsequently linked

with the remainder of the code for the compiler. Each time

the function yylex() is called, it finds the next token from

the input, the tokens being defined by the regular

expressions originally used as the specification file for flex.

The C code associated with the matching regular expression

is executed, and it is this code that has the responsibility in

a conventional lexical analyser for returning the identity of

the token just recognised. The automated generation of the

recognising code makes the construction of a lexical

analyser much easier.

The high-level structure of the input is simple. It consists

of three sections, separated by lines containing just the

characters %%.

The definitions section consists of a set of

name/definition pairs, used primarily to associate mnemonic

names with regular expressions used in the rules section.

The rules section is a list of regular

expression/corresponding C action pairs. Finally, the user

code section is copied directly to the output generated by

flex and contains C functions which call or are called by the

code in the rules section.

The details of flex syntax are easily available. There are

many internet resources and textbooks, such as [7]. The

power of flex is illustrated here by some examples of its use.

3.4.1.1 A Simple Example

Before tackling the lexical analysis of C and to illustrate the

structure of the input to flex, an example of a very simple

lexical analyser may be helpful. The language for which this

lexical analyser is being written includes just three distinct

lexical tokens:

1. A “word”, consisting of a letter (all letters can be upper

or lower case), followed by an arbitrary number (can be

zero) of letters or digits.

2. A “number”, consisting of one or more decimal digits.

3. Any other character. White space (consisting of any

number of spaces, tabs and newlines) is ignored. But

note that white space can be used to separate adjacent

words or numbers.

This lexical analyser could form the starting point for the

front-end of a compiler for a very simple programming

language or for a command language interface to a

software package.

Flex generates a function yylex which is called to get the

next token from the input. We would like yylex to return an

integer value to indicate the identity of the token, 1 for a

“word”, 2 for a “number” and 3 for any other character.

There are no illegal tokens in this language.

Here is a file for input to flex, complete with a main

program to repeatedly call the lexical analyser generated by

flex.

This file is input to flex, thus generating a C program, in

default, a file called lex.yy.c. This C program is compiled

and the resulting executable program extracts the tokens

from its input, outputting the identities of the tokens. If this

lexical analyser were to be included in a complete compiler,

the main program would obviously have to change and the

syntax analyser would probably have the responsibility of

calling yylex. But this structure for a main program offers a

simple way to help verify that the lexical analyser is

operating correctly.

The first section of the flex code (the definitions) gives

symbolic names to regular expressions used later in the

rules section. The letter expression matches a single

(upper or lower case) letter. The digit expression matches

a single decimal digit. letter_or_digit matches a single

letter or decimal digit and white_space matches a single

space, tab or newline. Finally, other matches any single

character except newline. These definitions are not strictly

necessary, but they allow the use of symbolic names in the

rules section to improve readability.

The rules section consists of just four rules. Each rule

consists of a regular expression/pattern followed by the

action in C code to be taken on matching that regular

expression. The first rule matches white space of any length

on the input and the null C statement as the action causes

the white space to be ignored. The pattern in the second

rule matches a “word” as defined at the beginning of this

section (a letter followed by an arbitrary number of letters

or digits). The action on recognising a “word” is for the

lexical analyser (i.e. the function yylex) to return the

integer value 1. The third rule matches a “number” as a

string of one or more decimal digits and returns the value 2.

The final rule is a catch-all so that any other character still

unmatched causes the integer value 3 to be returned by

yylex.

Finally, the user code section of the input to flex defines

a main program to repeatedly call yylex() outputting the

value returned by yylex (the identity of the lexical token)

together with a string representation of the token. flex

provides a special variable yytext that contains the text

that matched the regular expression pattern in the rule. The

while loop repeatedly calls yylex() and this loop

terminates when yylex() returns the value 0, signifying end

of file.

The yywrap() function is also defined here as always

returning the value 1. yywrap is automatically called when

yylex encounters the end of the input file. If yywrap returns

1, then yylex assumes that its job is done and there are no

more characters to analyse. If, however, yywrap returns 0,

this indicates that yylex should continue and yywrap will

have opened a new file for processing. This is a mechanism

for allowing input from multiple files, not needed in this

simple example.

The rules and the user code can be seen in action in this

sample run. When the program generated by flex runs and

is presented with the input:

it produces the output:

This simple example illustrates the issue of ambiguity in

the set of regular expression patterns. The first line of the

sample input consists of a single a and the lexical analyser

correctly identifies this as a “word” (lexical token 1). But this

a also matches the final rule (lexical token 3). The flex-

generated lexical analyser has a feature ensuring that if two

or more rules match the same string, the earlier rule takes

precedence. So the ordering of patterns in the rules section

may be important. Furthermore, the input ABc123a is also

recognised here as a single “word”. It could also match the

given rules as a “word” (ABc), followed by a “number” (123),

followed by another “word” (a). Because flex has the feature

that the longest match is the one chosen, the action here is

to return a single “word”. These two rules for resolving

ambiguity greatly help simplify the construction of lexical

analysers for programming languages. If the rules input to

flex had to be formally unambiguous, they would become

unmanageably complex.

3.4.1.2 A Lexical Analyser for DL

DL is a simple language with a small set of easily-defined

lexical tokens. We have already seen how a lexical analyser

for DL can be coded directly in C but it is certainly worth

examining a different approach, using the flex tool. As ever,

the path to an implementation starts with producing a list of

the tokens to be recognised, and generating regular

expression definitions for each token. This leads directly to

the flex specification.

This example code is not quite complete. It needs a short

preamble to include header files providing a link to the

syntax analyser and defining token names and so on. It also

needs a few lines of code to read to the end of a comment

(the comment() function has to be written).

The definitions of letter, digit, letter_or_digit,

white_space and other are simply made to improve

readability in the rules section. The two-character tokens

are defined first, followed by the reserved words, followed

by identifiers and numerical constants. Comments and

white space are then ignored and finally all the single

character tokens are handled by the simple rule matching

all remaining single characters.

The order of the rules has to be checked. This is a

common source of error. The reserved words have to be

matched before the identifiers to prevent an input such as

else being recognised as an identifier rather than a

reserved word. Here, both rules match the same number of

characters and the first rule of the two takes precedence.

Using the numerical value of the character for single

character tokens is a useful trick, saving coding effort. The

traditional way of managing the encoding of tokens is to

make sure that the defined values of all the non-single

character tokens are greater than 255 (the maximum

numerical value of a single character, assuming the use of

an 8-bit character set). This is handled almost automatically

if these token names (EQSYM, LESYM, etc.) are declared in

the bison file defining the syntax analyser. Examples of this

integration are given in Chap. 5.

Finally, the code associated with integer constants would

need a little enhancement to handle errors such as overflow.

The function atoi needs to be replaced by something that

can handle these errors. The value of the constant is placed

in the global variable lexnuval to make it available to the

syntax analyser.

3.4.1.3 Towards a C Lexical Analyser

Flex and other lexical analyser generating tools have many

more features to support the specification of programming

language-oriented regular expressions and actions. To

illustrate this, we now look at some of the techniques that

can be used to construct a lexical analyser for C. Some of

the more interesting lexical tokens from C are selected for

implementation using flex.

It is tempting to start off by coding the regular

expressions required to recognise the individual tokens, but

some careful planning is required first. It is essential to

begin with an accurate list of all the lexical tokens to be

recognised, obtained from a language definition document.

Next, various design issues should be considered, including:

What is the interface between the lexical analyser and

the syntax analyser? Typically, the token identity is

encoded as an integer value and the “values” of tokens

such as constants and identifiers are returned as

strings.

How are source lines beginning with # to be treated? Are

they all handled by the preprocessor? Presumably the

#line directive has to be handled in the lexical analyser.

There is a particularly nasty problem in the analysis of C

in the handling of typedef names (see Sect. 3.1.3). It is

probably advisable for the lexical analyser to ignore this

particular issue and leave it to the syntax analyser.

How is it best to handle reserved words? Having a

separate regular expression for each reserved word (e.g.

if return t_if;) is certainly possible, but it may be

better to handle reserved words and names using the

same rule (letter or underscore followed by any number

of letters, underscores or digits) together with some

simple code to check whether the matched string is in

fact a reserved word.

Are there constraints on the ordering of patterns in the

rules section? Is there any potential ambiguity?

Are there any regular expressions that could usefully be

included in the flex definition section to make the rules

section more readable? This should become clear as the

rules are developed.

We can now examine the coding implications of some of

the issues involved with writing a lexical analyser for C. The

full source is not presented here because there are good

examples of such code available on the internet. A simple

search will reveal a great deal of useful information. We can

follow the design of the lexical analyser presented in

Sect. 3.4.1.1, adding more rules and providing functions in

the C code section to support the recognition of particular

tokens. Some of the more interesting aspects of an

implementation are as follows.

The identities of the tokens recognised by the lexical

analyser are returned as integers, but to make the code

a little more readable and maintainable, the tokens are

given symbolic names:

All the tokens can be defined in this way. The starting

value of 1000 is prompted by a simple trick for the

representation of all the single character tokens in the

language. These are all returned as their character

values assuming that they can all be represented as

conventional ASCII values, starting the representation of

other tokens at 1000 can cause no conflict.

A simple main program is required to support the

testing of the lexical analyser. Something like this will

probably suffice:

Here, the lexical analyser (yylex()) is called repeatedly

until the end of the input file, each time outputting the

identity of the token read as an integer and the text

actually recognised (yytext).

Comments (starting with /* and ending with */) are

best recognised by a rule of the form:

The function comment() reads the input, discarding

characters until it has read a * followed by a / or end of

file. Implementing it this way is much simpler than

puzzling over the details of a regular expression to

represent a complete comment which can, of course,

run over multiple lines.

Identifiers and reserved words can be dealt with

together. Assuming that LETTERS is defined as [a-zA-

Z_] and DIGITS as [0-9], the rule for identifiers and

reserved words is:

Here, classify() is a function returning the integer

identity of the word just recognised—is it a reserved

word (if so, which one) or an identifier (if so, return the

value t_identifier)? A simple binary or even linear

search or a hash table would be appropriate for

classify().

Numerical constants have a variety of forms. For

example, a decimal integer constant consists of a

nonzero decimal digit followed by zero or more decimal

digits followed by an optional integer-suffix. The integer-

suffix is either l or u or ul or lu, and the l’s and u’s can

be in upper or lower case. A possible rule is:

There are many other constant types to deal with. At

first sight, these regular expressions may seem

overwhelmingly complex, but constructing them step by

step from a formal definition of the language is

tractable.

String constants are based on a sequence of characters

enclosed between double quotes. A pattern of the form

\"(\\.|[ˆ\\"])*\" deals with a sequence of escape

characters (a followed by another character) and

ordinary characters (except for or " – the ˆ specifies

that the set of characters to be matched excludes those

in the square brackets), all enclosed between double

quotes. Dealing with escape characters in their various

forms is handled elsewhere in the lexical analyser.

Simple single and multi-character tokens are much

easier. Rules of the form:

can be used. Note that the rules of the flex-generated

lexical analyser will result in t_le_op rather than ’
 ’

and ’=’ being recognised when presented with the

input =.

White space can be ignored, and finally any remaining

unrecognised characters can also be flagged as an error

and then ignored:

It would be better in the complete compiler to report the

illegal character to the syntax analyser as an error token,

but for testing a stand-alone lexical analyser this simple

error message will suffice.

Attention to detail is the key message. The syntax of the

lexical tokens of most programming languages can be

surprisingly complex, and ensuring that the rules in flex

correspond precisely to the rules in the language definition

needs care.

As can be seen, specifying more complex regular

expressions can be challenging. The syntax of flex’s regular

expression includes many powerful constructs, and this

flexibility results in a regular expression language that

needs careful study [7].

3.4.2 Comparison with a Direct
Implementation
This chapter has examined two distinct approaches for the

construction of a lexical analyser. Both have advantages

and both are used today for real compilers. Hybrid

approaches are also possible, where some of the tokens are

recognised by hand-written code and the others via the

regular expression rules of a lexical analyser generator.

Writing a complete lexical analyser by hand has several

advantages.

Programming by hand may be the only option because

there may be no lexical analyser generating tools

available that are compatible with the programming

language being used for the compiler’s implementation.

The process of compiler construction is less dependent

on the availability of other software tools, and there is

no need to learn the language of a new software tool.

For example, the newcomer may find specifying

complex regular expressions in flex (and other, similar

tools) rather difficult.

There are no real constraints on the techniques used for

recognising tokens because it is easy to add ad hoc

code to deal with awkward analysis tasks.

The memory requirements of the lexical analyser can be

modest. A lexical analyser generated automatically may

be more memory hungry despite the effect of

techniques for internal table compression.

Performance of the lexical analyser produced in this way

can be very good.

However, using a software tool purposely made for the

job offers some significant benefits.

The code is more likely to be correct, particularly for

lexical tokens with a complex structure. For example,

writing code by hand for recognising a floating point

constant as found in traditional programming languages

is a daunting task. But once a regular expression has

been constructed, the software tool should generate

accurate code without a problem.

Regular expression specifications for the lexical tokens

may be available in the language specification or

documentation. Transcribing them into a flex-acceptable

form should be easy.

The task of writing the lexical analyser is potentially

much simpler because much less code has to be

written.

The lexical analyser is easy to modify.

Performance of the lexical analyser produced in this way

can also be very good.

Lexical analysers for DL have been written by hand and

also by using flex. The hand-written lexer is approximately

140 lines of code, the flex file is approximately 70 lines of

code, including all the preamble and associated functions.

The C code generated by flex has approximately 1870 lines

(but not designed or intended for human reading!). One

would expect to find increased proportional savings in lines

of source code as the complexity of the lexical analyser

increases. When execution times are compared, it is clear

that there is very little difference between the two

approaches, with the flex-generated parser just marginally

ahead in most tests.

There is no clear winner here. Nevertheless the advice of

“using the right tool for the job” is worth bearing in mind.

3.5 Conclusions and Further Reading
The lexical analyser is a good place to start when

undertaking a compiler construction project. The algorithms

and data structures that have to be used do not need to be

complex, and their use should result in code that is efficient

in terms of both space and computation time.

Starting with a precise definition of all the lexical tokens

is essential. This implies a good understanding of the

interface between the lexical and syntax analysers and their

division of responsibilities. Thinking in terms of a regular

expression formalism is undoubtedly the right way of

managing tokens.

Testing is essential too. Leaving testing of the lexical

analyser until it is connected to the syntax analyser will

make debugging very much more difficult. Testing the

lexical analyser as a stand-alone program is clearly the right

thing to do.

There are many compiler textbooks explaining the theory

of finite-state automata and discussing how these machines

may be implemented in software. For example, [5, 8–10] all

contain much relevant background material to the

construction of lexical analysers. A good reference for the

compiler construction tools lex and yacc (and flex and bison

too) is [7].

There are now many high-quality open-source examples

of lexical analyser code available on the web, easily found

with any search engine. These form a superb learning

resource. Compilers today are rarely written from scratch

and freely available examples can be used for ideas and as

the basis for further development. There are also good

tutorials available for the compiler construction tools. The

archives of the comp.compilers newsgroup and mailing list

form an invaluable compiler construction resource.

Exercises

3.1. Write a lexical analyser for a simple programming

language (such as DL) firstly by hand and then by

using a lexical analyser generator, generating code in

the same language as you used for the hand-written

version. Compare the sizes of the two sources. Also

compare code sizes and execution times.

3.2. Gather together the specification of several high-level

programming languages and extract precise

information about:

The characters that can appear in an

identifier/name. Are there length restrictions? Are

upper and lower case letters treated as being

identical?

Comments—exactly where can they appear?

White space—where and how is it significant?

3.3. Write some code to read and analyse a floating point

constant. Assign its value to a floating point variable

and print it. How “accurate” is your conversion.

Maybe [1] will help with the understanding of these

issues.

3.4. A floating point constant in a hypothetical

programming language consists of one or more

decimal digits followed by a full stop, followed by zero

or more decimal digits. Express this in terms of a

regular expression. Try it out using flex or a similar

alternative.

3.5. What high-level language characteristics make lexical

analysis difficult? Why should a particular construct

be recognised in the syntax analyser rather than in

the lexical analyser?

3.6. Write a piece of software to count the number of

times the reserved word if appears in a C program

source file. Consider modifying this program to count

the number of distinct identifiers used in the program.

Why is this harder?

3.7. Write a complete lexical analyser for a real

programming language. Make sure that it works.

References
1. Goldberg D (1991) What every computer scientist should know about

floating-point arithmetic. ACM Comput Surv 23(1):5–48
[CrossRef]

2. Clinger WD (1990) How to read floating point numbers accurately. In:
Proceedings of the ACM SIGPLAN ’90 conference on programming
language design and implementation, White Plains, NY, pp. 92–101

3. Kernighan BW, Ritchie DM (1988) The C programming language, 2nd edn.
Prentice Hall, Englewood Cliffs
[MATH]

4. Thompson K (1968) Regular expression search algorithm. Commun ACM
11(6):419–422
[CrossRef][MATH]

5. Mogensen TÆ (2011) Introduction to compiler design. Undergraduate
topics in computer science. Springer, Berlin

6. Lesk ME (1975) Lex – a lexical analyser generator. AT&T Bell Laboratories,
Murray Hill. Computing Science Technical Report 39

7.

http://dx.doi.org/10.1145/103162.103163
http://www.emis.de/MATH-item?0701.68014
http://dx.doi.org/10.1145/363347.363387
http://www.emis.de/MATH-item?0164.46205

Levine J (2009) Flex & bison. O’Reilly Media, Sebastopol

8. Grune D, Bal HE, Jacobs CJH, Langendoen KG (2000) Modern compiler
design. Wiley, New York

9. Aho AV, Ullman JD (1979) Principles of compiler design. Addison-Wesley
Publishing Company, Reading

10. Aho AV, Lam MS, Sethi R, Ullman JD (2007) Compilers – principles,
techniques and tools, 2nd edn. Pearson Education, London

(1)

© Springer International Publishing AG 2017

Des Watson, A Practical Approach to Compiler Construction, Undergraduate

Topics in Computer Science, DOI 10.1007/978-3-319-52789-5_4

4. Approaches to Syntax
Analysis

Des Watson1

Department of Informatics, Sussex University,
Brighton, East Sussex, UK

Des Watson

Email: desw@sussex.ac.uk

The heart
of the analysis phase of the compiler is the syntax

analyser. It takes a stream of lexical tokens from the lexical

analyser and groups them together according to the rules of

the language, thus determining the syntactic structure of

the compiler’s input. The syntax analyser creates data

structures reflecting this syntactic structure and then it is

up to later phases of compilation to traverse these

structures and finally to generate target code.

Fig. 4.1 BNF for a trivial arithmetic language

mailto:desw@sussex.ac.uk

Section 2.​3.​3 introduced the idea of parsing where the

syntax rules of the language guide the grouping of lexical

tokens into larger syntactic structures. Parsing requires the

repeated matching of the input with the right-hand sides of

the production rules, replacing the matched tokens with the

corresponding left-hand side of the production. But as we

have seen, the order in which this matching is done and also

the choice of which productions to use is fundamentally

important. We need to develop standard algorithms for this

task, and as a first step, examining the reverse process of

derivation may help with this.

4.1 Derivations
We start with a very simple grammar, shown in Fig. 4.1

defining a rudimentary form of arithmetic expressions using

the variables x, y and z, with the operators + and *.

Our aim is to show how the string x+y*z can be derived

from the starting symbol expr , thus showing that x+y*z is

a sentence of this grammar.

4.1.1 Leftmost and Rightmost Derivations
The process of generating a derivation starts, naturally, with

the starting symbol. Then, at each stage of the derivation a

non-terminal symbol in the sentential form is chosen and

this symbol is replaced by the corresponding production’s

right-hand side. For example, x+y*z can be derived from

expr as follows:

expr

expr + term

term + term

factor + term

x + term

x + term * factor

x + factor * factor

x + y * factor

x
+
y
*
z

In this example, the leftmost non-terminal in each sentential

form is expanded at each step, and when x+y*z is

generated, the expansion stops because there is nothing left

to expand. This is the leftmost derivation
.

It is possible to derive x+y*z in a different way. For

example:

expr

expr + term

expr + term * factor

expr + term * z

expr + factor * z

expr + y * z

term + y * z

factor + y * z

x
+
y
*
z

Here, the
rightmost non-terminal in each sentential form is

being expanded at each step. This is the rightmost

derivation, sometimes
called the canonical derivation.

It is of course possible to perform the derivation by using

other selection methods for non-terminals to be expanded

but at each step there has to be an explicit or implicit

indication of which non-terminal is being expanded and

hence which production rule is being used. In the cases of

leftmost and rightmost derivations, the identity of the non-

terminal being expanded is implicit.

4.1.1.1 Parse Trees

These two derivations look radically different although
they

both produce the same sentence. They also share a

common parse tree. The generation of the parse tree while

performing the derivation is not difficult. The root of the tree

is the starting symbol (here, expr). If the production

 is used in the derivation process, add the

children to the node X. This implies that the number

of children of a node is equal to the number of non-terminal

symbols in that node.

It is easy to verify in the example above that the parse

tree generated in both the leftmost and the rightmost

derivations is the tree shown in Fig. 4.2. It is just the order in

which the nodes are generated that is different.

Fig. 4.2 Tree from the derivation of x+y*z

The parse tree has embedded within it all the production

rules used in constructing the derivation. The parse tree

defines a unique leftmost derivation and a unique rightmost

derivation.

The process of parsing is equivalent to performing

derivation in reverse. We have already seen in Sect. 2.​3.​3

that the choice of which substring to reduce at each step is

critically important to the parsing process. Specifically, the

substrings cannot be chosen at random. But if we guarantee

that the substring matching corresponds to the choice and

order of either the leftmost or the rightmost derivation then

the parsing process will succeed
.

4.2 Parsing
Many algorithms have been developed to help solve the

parsing problem. Most of these algorithms are designed to

work using grammars with particular characteristics and

later in this section we will see some of these constraints.

Some algorithms work with grammars with few constraints

and such parsers are rarely used in real compilers largely

because of their significant demands of computation time

and/or memory space. For nearly all programming

languages comparatively simple parsing techniques can be

used and it is those that will be examined in this book. The

principles behind parsing will be presented in this chapter.

Practicalities of parser implementation are covered in

Chap. 5.

Section 2.​3.​3.​2 distinguished between top–down parsers

and bottom-up parsers. The reductions performed by the

top–down parser correspond to the order and identity of the

substitutions performed by the leftmost derivation. The

bottom-up parser corresponds to the rightmost derivation,

performing the substitution steps in the reverse order to

that used by the rightmost derivation.

4.2.1 Top–Down Parsing
The top–down parser
starts by constructing the parse tree

with a single node labelled with the start symbol. It can then

build up the complete parse tree by creating the subtrees

one by one, in a left-to-right order. In building a subtree, the

root node of that subtree is created and than all the sub-

subtrees of that subtree are generated. This is a recursive

algorithm, generating the tree in pre-order (node, then its

subtrees in a left-to-right order).

This is hard to visualise. Fortunately, the algorithms

required to do this are usually very simple for compliant

grammars and the construction of the parse tree integrates

easily with the reading and recognition of the lexical tokens.

4.2.2 Parse Trees and the Leftmost
Derivation
To show how this type of parser works, we can
return to the

trivial arithmetic language presented above. Our task is to

illustrate the parsing of x+y*z.

The parser starts off by constructing a tree containing

just the starting symbol as the root node.

The next step in the pre-order generation is to set up

the leftmost subnode. This is done by looking at the

grammar of the language and noting that expr is

defined as

expr term | expr + term

Which alternative should be chosen? This turns out to

be a difficult issue because of the characteristics of this

grammar. We choose the

expr expr + term

alternative in this case (because we happen to know

that it is the right thing to do). This approach is

acceptable for an example, but clearly has no place in a

parsing algorithm used in a compiler. This problem will

be examined in detail later in this chapter. The tree then

looks like this.

We then have to deal with the nodes and their subtrees

from left to right. This time we use the production

expr term

and the tree becomes:

The lower term node has to be tackled next. Use the

production

term factor

Again, the reason for this choice has to remain

tenuous for now.

The factor node is given a single child via the

production

factor x

Since we have ended this branch of the tree with a

terminal symbol, this symbol is matched with the input.

Our input is x+y*z, the x is matched and the remaining

input is +y*z. We then unwind from the recursion all the

way back up to deal with the expr + term node.

We have just dealt with the leftmost expr node and

its children, so we now tackle the node +. This again is

matched with the input and so y*z remains. The next

step is to deal with the third node term . We use the

term term * factor production and the tree

becomes:

The latest term is given the child factor from the

production

term factor

That factor corresponds to y. We use the production

factor y

This y is matched with the input and the remaining input

is *z. The recursion returns to the * node which again is

matched with the input, resulting in just z remaining.

Finally we use the production

factor z

The resulting tree is then:

The z is matched with the input, leaving nothing on the

input. Matching all tokens of the input leaving nothing is

an indication of parsing success.

This detailed example illustrates how the top–down

parsing process corresponds to the leftmost derivation. The

order in which the productions are used is the same as the

order in the leftmost derivation. However, this is not a good

example to illustrate how the top–down parser can be

programmed. In particular, we have glossed over the

problem of how to choose the productions when there are

alternatives.

4.2.3 A Top–Down Parsing Algorithm
There are easier ways of thinking about the top–down

parsing process. Instead of being driven by the construction

of the parse tree, one can think more about the process of

the recognition of the input. Our starting point here is the

formal grammar for the language.

Initially, the task of tree generation can be ignored so

that we can concentrate instead on the matching of the

terminal symbols in the grammar with the input stream

presented to the parser. This formulation of the top–down

parser also starts with the starting symbol of the grammar.

Suppose the starting symbol S is defined as . Our goal

of recognising S can then be restated as recognising the

subgoal A and then recognising the subgoal B. Then,

recognising A and B requires the recognition of their

subgoals, and so on.

If instead S is defined as , then S is recognised by

recognising an A or by recognising a B. When terminal

symbols appear in the right-hand sides of production rules,

these symbols are matched with the corresponding

instances of those tokens in the input string. If the match

fails, then the parsing fails. As the parsing process

continues, more and more tokens from the input will be

matched and in the case of a successful parse the process

will end with all input tokens having been matched.

This approach sounds both attractive and feasible and

the obvious way of implementing it is to associate a

programming language function with each non-terminal

symbol and the role of the function is to recognise an

instance of that non-terminal. For example, given the

definition of the non-terminal P as a function P()

could be written as follows.

Unfortunately dealing with a definition of the form

is harder. An obvious approach is to allow the recognising

functions to return a value indicating success or failure.

Then Q() could be called, if it returned failure, then R() is

called. However this is in general wrong because in running

Q(), tokens from the input will have been read and

consumed, and should R() then be called it will start

reading at the point where Q() left off rather than from the

beginning.

Again, there seems to be an obvious answer which

involves the use of backtracking. After
the failed call to Q()

the input could be backspaced to the state it was in just

before Q() was called. Then R() is called and it will read the

correct input. And for some grammars this approach will

work correctly. But for other grammars, problems remain.

Consider the scenario where Q() matches, returning

success. Suppose also that R() could have matched,

matching a different substring to that matched by Q().

Which match should be chosen? It depends on what follows

the matching of P in the grammar. This is beginning to look

complicated because it may require the handling of

backtracking amongst potentially all of the recognising

functions.

In practice, backtracking should be avoided if at all

possible. The complexity of the parsing code increases a

great deal and the parsing may become considerably less

efficient. Fortunately this does not mean that productions of

the form cannot be handled by a top–down parser. It

just means that some constraints have to be placed on the

details of such productions.

4.2.3.1 Lookahead

To recognise P defined as we really
have to know

whether to select the Q route or the R route. If we are to

avoid backtracking then there has to be some characteristic

of the definitions of Q and R to enable the selection to be

made. The way in which this is commonly done is to make

use of lookahead. Suppose the parsing process is at a stage

where P has to be recognised. A certain number of tokens

have already been consumed from the input. Suppose also

that it is possible to examine (without preventing them from

being read again) some tokens beyond the current point of

input. It may be that the identity of these lookahead tokens

allows us to determine whether to follow the Q path or the R

path. For example, if the definition of Q is and the

definition of R is where a and b are terminal

symbols, then if the first lookahead token is a we follow the

Q path and if the first lookahead token is a b we follow the R

path.

This idea of lookahead is essential for practical parsers

for non-trivial grammars. But managing many tokens of

lookahead adds to parser complexity especially if the tokens

are being input as they are required. Perhaps surprisingly

just a single token lookahead will suffice for the syntax of

most programming languages. Managing a single token

lookahead is straightforward and will be discussed in

Chap. 5.

Consider this simple example illustrating how lookahead

can help.

Here, x, y and z are terminal symbols. In the code to

recognise an S, if the current lookahead token is a z, we use

the production , otherwise (if it is an x or a y) use

. Similarly in the code to recognise an A, if the current

lookahead token is a x, we use the production and if

it is a y use the production . If the current lookahead

token is a z this indicates a parse error (see Sect. 4.2.6).

If the lookahead can allow the correct alternative to be

chosen in a production involving alternation, as in the

example above, then a parser can be written without having

to make use of any backtracking. The
parsing process has

been made deterministic. This allows
the construction of a

predictive parser. The traditional and practical way of

coding such a parser is, as we have seen, to associate a

function with each non-terminal symbol whose task is to

recognise an instance of that non-terminal. These functions

call each other according to the syntax rules of the

grammar, matching terminal tokens from the input as they

go. This is a recursive descent parser
and many examples,

including the parsing code for this language, will be

presented in Chap. 5.

Unfortunately, this approach to parsing will still have

difficulties with some particular constructs found in

production rules. Fortunately, there are usually

uncomplicated solutions
.

4.2.3.2 Factoring

Suppose there
is a production rule of the general form

. Writing a recognising function for A is problematic

because our current lookahead symbol (presumably

something that can start an) is not enough to enable us to

determine whether to follow the or the branch. The

solution here is not to resort to more lookahead. Instead this

production rule can be rewritten as:

This technique is known as factoring. There is now no

alternative in the first production so that can be coded

easily, and in the second production the current lookahead

token should hopefully be capable of predicting which

branch to take, depending on the definitions of and .

There are of course grammars that are best dealt with by

increasing the parser lookahead, but this comes at a cost of

increased complexity
.

4.2.3.3 Left Recursion

There is a second
issue which occurs often in the definitions

of traditional programming languages. Consider a

production of the form . This style of production is

often seen in programming language grammars, defining an

expression-like structure. When recognising an E,

determining whether to follow the or the T path needs

consideration, as described above in the section on

factoring. But there is another specific problem in the

handling of . The task of recognising an E starts off

by recognising an E which in turn starts by recognising an

E.... This process will never terminate because it consumes

no input at each stage. This is a left-recursive production,

and left recursion always causes problems for top–down

parsers. In order to make the recognition terminate, the

alternative production has to be used somehow. The

grammar has to be modified.

Fortunately there are easy solutions. There is a standard

transformation that can be applied to these left-recursive

productions. A production of the form is transformed

into the productions

where represents the empty string. So can

be transformed into

The left recursion has been removed at the cost of an extra

non-terminal symbol () and a little extra complexity.

However, in many cases of left recursion occurring in the

definitions of programming languages, there is a simpler

solution. Left recursion is replaced by iteration. The power of

EBNF allows us to rewrite as

This turns out to be easy to implement and examples

appear in Chap. 5.

Unfortunately, this is not quite the end of the story for

this form of left recursion. The replacement of left recursion

by iteration may need to be done with care when the parse

tree nodes are generated since productions of the form

 imply that the operator is left-associative and

this has to be carried forward even when the

formulation is used. However this is not difficult. Also it

should be noted that left recursion is sometimes not so easy

to spot. For example

.

.

or even

.

.

In these examples, multiple productions may be involved

in the left recursion and dealing with this neatly and reliably

may need some care
.

4.2.3.4 Ambiguity

There is another
problem area, but not confined to top–

down parsing. A grammar is ambiguous if there exists more

than one parse tree representing a given sentence. For

example, returning to the grammar in Fig. 4.1 for the trivial

arithmetic language, we can simplify the grammar by just

allowing the + operator.

expr factor | expr + factor

factor x | y | z

There is nothing wrong with this grammar and the +

operator is left-associative. An alternative grammar could be

written as

expr factor | expr + expr

factor x | y | z

This grammar is ambiguous because sentences such as

x+y+z have more than one parse tree as shown in Fig. 4.3.

Specifically in this example, the + operator is being defined

as being both left- and right-associative. It has to be one or

the other.

Fig. 4.3 Two parse trees for x+y+z

Detecting ambiguity in a grammar is not always easy. But

removing it saves difficulties later
.

4.2.4 Classifying Grammars and Parsers

In the discussion above about top–down parsers, it became

clear that certain constraints had to be put on the grammar

to make it amenable to top–down parsing. The Chomsky

hierarchy points to type 2 context-free languages as the

class that should be targeted for use as programming

languages but the type 2 languages are not subdivided to

indicate, for example, which are appropriate for top–down

parsing.

A useful terminology for describing grammars exists and

this terminology gives some indication of how the grammar

should be parsed. An LL(k) grammar
can be parsed using a

top–down parser using a lookahead of at most k symbols.

The LL(k) parser reads the input from L
eft to right (i.e. from

the beginning to the end) and produces a L
eftmost

derivation. It needs up to k symbols of lookahead to

determine which production to apply at any stage. The LL(1)

grammars are widely found in practice because they are

sufficiently powerful to cover the needs of most

programming languages and they are simple to implement

using a top–down parser. As we have already seen in this

chapter these parsers are simple and efficient and do not

require any backtracking.

In contrast, an LR(k)
grammar can be parsed using a

bottom-up parser using a lookahead of at most k symbols.

The LR(k) parser reads the input from L
eft to right and

produces a R
ightmost derivation in reverse. The parser

reads the input from left to right and makes a decision on

which production to use next on the basis of the symbols

already read and the k symbols of lookahead. These parsers

will be examined in the next section. They are harder to

implement than top–down LL(k) parsers but nevertheless

are efficient and require no backtracking. They are

important primarily because of their power. It is possible to

construct some sort of LR parser for virtually all

programming languages for which Chomsky type 2

grammars exist. Furthermore all LL(k) grammars are LR(k).

The practical consequences of this are discussed in Chap. 5

where it is argued that both approaches to parsing have a

role in the field of high-level language compilers and other

software tools
.

4.2.5 Bottom-Up Parsing
Top–down parsers start with the starting symbol
. Bottom-up

parsers, in contrast, start with the first token of the input.

Their mode of operation may seem very much more

intuitive than top–down parsing. They repeatedly match

symbols from the input with the strings on the right-hand

sides of production rules, replacing the matched strings with

the corresponding left-hand sides. This continues until,

hopefully, just the starting symbol remains. This process has

already been illustrated in Sect. 2.​3.​3 where the choice of

which substring to reduce at each stage is shown to be

critically important in order to achieve a correct parse.

The correct order of matching for the bottom-up parser is

defined by the rightmost derivation. The bottom-up parser

has to perform the rightmost derivation in reverse
. This

produces the canonical parse. For example, if we start with

the input x+y*z from the example in Sect. 4.1.1 using the

grammar in Fig. 4.1 and reverse the rightmost derivation,

we can see how the bottom-up parser should operate:

This looks promising in that it could give a pointer to a

particularly simple route to an implementation. However, a

major problem remains. This example is easy because we

already have the rightmost derivation. But in general we will

not have this derivation to hand, so the bottom-up parser

has to decide itself which substring to reduce at each stage.

This substring that is matched with the right-hand side of a

production and replaced by the corresponding left-hand side

is called the handle and the key problem of bottom-up

parsing is the identification of the handle at each stage.

The algorithm used to identify the handle obviously has

to be based on the identity of the lexical tokens read from

the input. Ideally, the number of tokens needed to identify

the handle should be limited in order to achieve an efficient

parser. Furthermore, backtracking should not be necessary,

again for efficiency reasons. So the identification of the

handle should be possible by just considering the tokens of

the handle itself together with tokens in the immediate

locality of the handle. In other words, we may need to

examine some left context
, the handle itself
and some

lookahead. Practical algorithms for handle identification will

be presented in Chap. 5.

4.2.6 Handling Errors
The compiler has to be able to deal
with syntactically

incorrect input. The user of a compiler cannot guarantee

that the input presented to the compiler always conforms to

the formal syntax of the language and so it is important for

the compiler to identify these errors and provide the

programmer with appropriate information to make the

correction of these errors easy. This turns out to be a

surprisingly difficult requirement to fulfil.

We have already looked at some of the issues concerned

with errors detectable by the lexical analyser (see Sect. 3.​2.​

2.​7). Dealing with errors found in the syntax analyser is

rather more complicated. Furthermore the syntax analyser

is likely to have to deal with the errors detected and

reported by the lexical analyser too. Error handling requires

the detection of the error (generally easy), producing an

appropriate error message for the compiler user (again,

generally easy) and finally recovering appropriately from

the error (generally difficult).

Detection and reporting of a syntax error in the syntax

analyser usually presents no real difficulty. At all stages in

the parsing process a top–down or a bottom-up parser will

be aware of the set of lexical tokens that can be validly

accepted in that particular location (this is indirectly

specified by the grammar) and should an unexpected token

be read, the syntax analyser can generate an error message

of the form “On source line 123 the token ‘.’ was found, but

‘;’ was expected”. However, there are often slight

complications here because precise localisation of the cause

of the error, as far as the programmer is concerned, may

not be possible because the error may be detected some

way away from the mistake actually made by the

programmer. For example, consider this fragment of a C

program:

If the { token is omitted from the line starting if, the

error will probably be reported on the line containing the }

or even beyond. Whether or not this is a major issue is not

clear, but getting it “right” may not be easy because it may

not be obvious what “right” means in this context.

Real difficulties can occur when recovering from the

error. It is rarely acceptable for the syntax analyser to report

the error and then stop, relying on the programmer to

correct the error and restart the compilation process. In

most circumstances, the correct thing to do is to allow the

syntax analyser to continue so that it can report any

remaining errors in the source file. But the difficulty is that it

is usually very awkward to predict how best to restart the

syntax analyser. Which syntactic structure should it be

expecting after detecting the error? If a strange token was

erroneously added to the input and found, for example,

when the syntax analyser was parsing an expression, that

token could be skipped and the expression parsing

resumed. But if that strange token resulted from omitting

another token, then skipping that strange token may not be

the best thing to do. Ideally we would like just a single error

message for each distinguishable error in the input and so

there is a need for a mechanism to allow the syntax

analyser to resynchronise itself with the input. We will look

at a practical approach in Chap. 5. In some cases, avoiding

over-reporting syntax errors is easy to achieve. For example,

one should only report an undeclared variable the first time

it is used. But the general case of over-reporting errors is

somewhat harder
.

4.3 Tree Generation
So far in this chapter, the focus has been on the syntax

analyser’s role in reading the stream of lexical tokens and

ensuring that they form a syntactically correct program. The

syntax analyser has another essential task to perform. It has

to generate some output for the next phase of compilation.

This output is conventionally in the form of a tree and this

tree is generated as the parser, top–down or bottom-up,

performs reductions, matching right-hand sides of

productions. A full parse tree can be generated by creating

a new node each time a reduction is made. Later stages of

compilation will not need all this data and structure, and so

some simplifications to the tree structure can be made. This

simplified structure is the abstract syntax tree (AST). An

example of the simplification is shown in Fig. 2.​4.

Generating this form of tree is not complicated, but

requires some planning. The set of node types should

correspond closely with the formal syntax of the language,

omitting nodes for simple productions of the form and

for tokens that are now redundant such as parentheses in

expressions, where grouping is reflected by the tree

structure. Each node has to contain some indication of the

node type (e.g. “if statement”, “identifier”, “string

constant”, and so on), together with the corresponding data

for that node type. The form of the data depends on the

node type. For example, an integer constant may contain a

binary or string representation of the value of the constant.

A node for a variable may contain a string representation of

the variable name or, more likely, a pointer to that

variable’s entry in a symbol table. Creating the node and

initialising the data should not be difficult and this code can

be added easily to the parsing code. But the node has to be

linked in with an existing partial tree structure. This can be

done by designing the parsing functions to return pointers

to these tree nodes to their callers. For example, in a top–

down parser a function to parse a simple assignment

statement will generate a new “assignment” node with

space for two subtrees. One subtree will be set to be a

pointer to a node representing a variable, returned by the

call to the variable recognition function called in simple

assignment, and the other subtree will be set to the value

returned by the call to the expression recognition function.

The simple assignment function then returns a pointer to

the newly-created node. Practical examples are given
in

Chap. 5.

4.4 Conclusions and Further Reading

This chapter has highlighted the relationship between

derivation and parsing, how a top–down parser generates

the leftmost derivation and the bottom-up parser generates

the rightmost derivation in reverse. A major issue in the

development of a compiler is the choice of parsing strategy

for the language being compiled. Top–down parsers can in

general be written by hand or by parser generator

programs, directly from the grammar specification. Bottom-

up parsers can offer greater parsing power (dealing with

harder grammars) but at the expense of code complexity.

They are rarely written by hand, instead requiring the use of

a parser generator tool. We will look at practical examples in

later chapters.

Practical parsers need to be able to handle errors in their

input, reporting and recovering appropriately. They also

need to generate an abstract syntax tree for passing on to

the semantic analyser—the next phase of compilation.

There is considerable flexibility in the design of the AST.

There is an extensive literature on the theory of

grammars and parsing. Perhaps one of the most famous

textbooks in this area is [1] and a more compiler-oriented

coverage of context-free grammars and parsing is found

in [2]. Ambiguity in programming language grammars is

covered by [3], together with advice on the transformation

of grammars to make them unambiguous and suitable for

traditional parsing techniques. A classic reference for LR

parsing is [4].

Most programming language definitions are based on a

context-free grammar written in such a way as to avoid the

use of constructs that cause difficulties when writing a

parser. But when the grammar is not quite so helpful, there

are standard transformations available to turn the grammar

into a form that is much easier to implement. For example,

a context-free grammar can be transformed into Greibach

Normal Form, yielding something that can be parsed easily,

with a bound on the complexity of the parse. This, and the

relationship between context-free languages and pushdown

automata is covered in [1].

Compiler writers tend to be rather conservative in their

choice of parsing techniques for conventional programming

languages. There are good, practical reasons for this, but

there are times where different and maybe more powerful

techniques are required. A comprehensive description of a

wide range of parsing techniques is presented in [5],

applicable not just to the compiler’s syntax analyser. An

example of a powerful parser is the Earley parser [6], based

on dynamic programming. It is capable of parsing any

context-free language. Another powerful parser uses the

CYK algorithm and again makes use of techniques of

dynamic programming. It is described in [1].

Exercises

4.1 Produce a BNF or EBNF grammar for a simple language

designed to be used as a numerical calculator. It

should handle the four operators +, -, * and / with the

conventional precedences, allow parentheses and

operate on integer constants. Use this grammar to

produce a calculator program, reading a line of input

containing an arithmetic expression and outputting the

numerical result.

4.2 Extend the grammar for the numerical calculator to

include other operators such as % to perform

percentage calculations, trigonometric functions,

hexadecimal arithmetic, . This may not be trivial.

4.3 Extensive use of productions of the form has

been made in this chapter and this form of production

fits in well with the generation of a syntax tree. But to

avoid the left recursion, is often rewritten as

. How would you generate a correct syntax

tree from this form of production?

4.4 Produce an outline design for an abstract syntax tree

for a programming language of your choice. Are there

any syntactic constructs that cause particular

difficulties? Are names/symbols/variables better stored

in the tree or in a separate symbol table? By hand, try

generating a tree in your format for a simple program.

4.5 Look at the syntax rules of a programming language of

your choice and attempt to find rules that might cause

difficulty for a predictive top–down parser. Can the

rules be rewritten to avoid these difficulties?

4.6 Many high-level languages make use of tokens that

appear to be redundant. For example, some

programming languages support a while ... do

statement and the do is sometimes, strictly speaking,

redundant. Why is this done—after all, it’s more typing

for the programmer... ?

4.7 A list of items is defined as list item list

item where item is defined as any of the lower

case letters. The string abcd is a list. Generate its

abstract syntax tree. Suppose the list is defined as

list list item item . Generate the new

abstract syntax tree. Comment on the differences.

4.8 Do some research on the famous if...then...else

ambiguity and find out ways in which the syntax of

conditional statements changed in order to remove the

ambiguity.

4.9 Insert some deliberate mistakes into a high-level

language program and investigate how the compiler

deals with them. Can you produce an example where

the error message is really misleading? What error

detection and recovery features would you like to see

in a compiler designed for the novice programmer?

References
1. Hopcroft JE, Ullman JD (1979) Introduction to automata theory, languages

and computation. Addison-Wesley Publishing Company, Reading

2. Aho AV, Lam MS, Sethi R, Ullman JD (2007) Compilers – principles,
techniques and tools, 2nd edn. Pearson Education, Upper Saddle River

3. Mogensen TÆ (2011) Introduction to compiler design. Undergraduate topics
in computer science. Springer, Berlin

4. Aho AV, Johnson SC (1974) LR parsing. ACM Comput Surv 6(2):99–124
[CrossRef][MATH]

5. Grune D, Jacobs CJH (2008) Parsing techniques – a practical guide.
Monographs in computer science. Springer, New York

6. Earley J (1970) An efficient context-free parsing algorithm. Commun ACM
13(2):94–102

http://dx.doi.org/10.1145/356628.356629
http://www.emis.de/MATH-item?0296.68020

(1)

© Springer International Publishing AG 2017

Des Watson, A Practical Approach to Compiler Construction, Undergraduate Topics in

Computer Science, DOI 10.1007/978-3-319-52789-5_5

5. Practicalities of Syntax Analysis
Des Watson1

Department of Informatics, Sussex University, Brighton,
East Sussex, UK

Des Watson

Email: desw@sussex.ac.uk

Chapter 4 provided
an introduction to the process of parsing,

giving some of the theory and background. In this chapter we

adopt a somewhat more practical approach to syntax analysis

and we look in detail at the two most popular techniques used

for the construction of syntax analysers for programming

language compilers and similar tools. After some introduction to

these two approaches, together with some simple examples, we

move on to the development of two syntax analysers for the DL

language, showing how they can be developed and augmented

to produce the data structures needed by the next phase of

compilation.

The differences between the top-down and bottom-up

approaches have already been described, but the actual choice

of a parsing technique for any particular project needs a little

more discussion. In practice, the favourite top-down technique is

the predictive top-down parser, usually with just one token of

lookahead (i.e. LL(1)). Sometimes greater lookahead can be an

advantage, but comes at the cost of increased coding

complexity. Furthermore, backtracking top-down parsers are not

mailto:desw@sussex.ac.uk

in general needed or appropriate for programming language

parsing.

Some of the details of bottom-up parsing will be presented

later in this chapter. Although there are many different

algorithms that can be used to control a bottom-up parser, most

practical implementation make use of a parser generator

program to produce an LR(1)-style parser.

Bottom-up parsers can offer the advantage of being able to

cope with more complex grammars than those usable with a top-

down parser. There are common grammar features that need to

be transformed and removed before a conventional top-down

predictive parser can be used. The use of factoring and left

recursion elimination are important here. These transformations

are usually possible for the grammars defining constructs

commonly found in today’s programming languages, but

sometimes the transformations may need to be extensive and

may require some care and skill to make them effective.

Therefore, to simplify the choice of parser implementation

technique, we can restrict the set of possibilities by examining

just four approaches: top-down or bottom-up and hand-written or

machine-written using a parser generating tool.

Top-down, hand-written: a popular and widely used

technique, particularly for simpler programming languages.

The grammar should permit the construction of predictive

parsers and backtracking should be avoided.

Top-down, machine-written: there are good software tools

available, generating top-down parsers from a formal

grammar specification, in a variety of languages. For

example, JavaCC generates top-down parsers in Java and can

generate lexical analysers too. Some of these tools (JavaCC

included) can deal painlessly with grammars requiring more

lookahead than just one token.

Bottom-up, hand-written: not recommended! The task of

generating the controlling rules of a bottom-up parser is

complex and error-prone even for simple grammars. For a

parser for all but the simplest of grammars, this would be an

unwise choice.

Bottom-up, machine-written: there are many powerful

software tools generating bottom-up parsers and they have

been used extensively for the construction of real compilers.

Tools such as yacc [1], bison [2] or CUP [3] have been used

for a huge variety of parsing problems.

This book concentrates on two of these categories—top-down,

hand-written and bottom-up, machine-written. But as far as their

use is concerned, the tools for generating top-down parsers

appear quite similar to the bottom-up parser generators in that

they both require BNF-like grammar specifications. So the

experience of using the bottom-up parser tools is valuable when

learning how to use a top-down parser-generating tool and vice

versa.

There are so many different ways of writing a parser. They

vary enormously in complexity, efficiency, power, application

area and popularity. We will be concentrating on just a tiny

subset of the approaches available, but the parsers chosen cover

the most popular techniques appropriate for today’s

programming languages.

5.1 Top-Down
Parsing
Section 4.​2.​3 presented the basic ideas of practical top-down

parsing. Ideally, recognising code can be written directly from

the language’s BNF or EBNF or equivalent rules, structured so

that there is a recognising routine, function or procedure for

each of the language’s non-terminals. For example, the

production rule is handled by the code

To recognise a P, a Q followed by an R have to be recognised.

And once recognising code has been implemented for all the

non-terminals in the language, the code recognising the starting

symbol can be called, having the effect of recognising complete

programs written in that language. Before looking at the

practicalities of coding all this recognising code, we should

understand exactly what is being achieved here. These functions

simply recognise an instance of the corresponding non-terminal

construct. The function P above just recognises an instance of P.

In general these recognising functions produce no output unless

an error is found. But programs that produce no form of output

are rarely useful. We will see later in this section how these

recognising functions can be augmented to produce nodes in a

syntax tree and also produce output to help debugging.

The need for lookahead has also been highlighted. For

example, writing a predictive recognising function for

requires code to determine in all circumstances whether to follow

the Q route or the R route. This is done by having one or more

tokens in hand and on the basis of the identity of these tokens,

the code can decide which route to follow. Hand-written top-

down parsers generally rely on just a single token lookahead

throughout the parsing process. Some parsers may use just a

single token lookahead except when recognising particular non-

terminals where greater lookahead may be temporarily required.

5.1.1 A Simple Top-Down Parsing Example
This is all best illustrated by an example (from Sect. 4.​2.​3).

Here is a complete C program to recognise strings of this

language.

Compiling and running this program gives output of the form:

The program includes a global declaration for a character ch.

As the parser runs this variable always contains the next

character from the input—it is the lookahead. In this simple

language, all the lexical tokens are single characters and so the

lexical analyser can be replaced by the call to the standard

function getchar to read the next character from the input.

Before the parsing process starts by a call to the s function, the

lookahead is initiated by calling getchar to read the first

character of the input.

The function b checks that the current token is a y. If so, it

reads the next input character, but if not, it issues an error

message. Here, a function error is called which outputs a

message and then halts the execution of the parser.

The function a checks that the current token is an x. If so, it

skips over it and calls a recursively, corresponding to the

grammar rule . Otherwise it calls b.

Finally, the function s checks for z and if found, it reads the

next token and the parse succeeds. Otherwise, a is called, and s

checks for a z. If found, it reads the next token and the parse

succeeds again, otherwise an error is generated. There is a

minor issue in this function in that s finishes by performing a

lookahead. Strictly speaking this is not necessary but in this

case, no harm is done and it emphasises the need for consistent

lookahead throughout the parsing process.

This code can be written painlessly directly from the BNF

rules. The rules needed no modification before the parser could

be written. A key issue to notice is the management of

lookahead. It works in a very similar way to the one character

lookahead already shown in the hand-coding of lexical analysers.

The rule to follow is to ensure that on entry to any of the non-

terminal recognising functions, the lookahead variable ch should

already contain the first token of the non-terminal being

recognised. The first step in debugging a syntax analyser of this

style is to check that the lookahead is being carried out

consistently. Making a mistake with the lookahead is a very

common coding error.

What is next? This piece of code is just a recogniser. It does

indicate parsing success by outputting a comforting message,

but we will need to add code to handle tree generation (see

Sect. 5.3 to see how this is done). Also, a simplistic approach to

error handling has been adopted and, specifically, no attempt

has been made to do any error recovery. This issue is examined

later in Sect. 5.5. But notice that this parser can easily generate

informative error messages indicating what was expected and

what was actually found.

5.1.1.1 Practicalities

Faced with a complete BNF or similar grammar the task of coding

a predictive top-down parser may seem daunting. Experience

suggests that the best way of tackling the task is as follows.

Firstly, just check again that the lexical analyser works.

Trying to debug the syntax analyser when the problem

actually lies in the lexical analyser is a miserable task.

Write a recogniser first and do not worry at all about the

generation of the tree. Include code to output tracing

messages indicating which recognising functions are being

called. It may be possible to develop the recogniser in stages

by starting off with just a subset of the grammar and

gradually adding code to recognise further non-terminals

until the recogniser is complete. Do not worry about error

recovery at this stage, but error detection should come out

semi-automatically in the recognition process. Finally, test

extensively. This is somewhat tiresome because the tracing

output needs to be checked and associated with the

grammar-defined structures of the source program.

Add code to generate the syntax tree. Write a simple

function to display the tree in a human-readable form. Do

not remove the tracing code inserted in the last step. It can

just be disabled and then re-enabled if necessary to help

with debugging. Section 5.3 covers tree generation.

Consider error recovery. See Sect. 5.5.

Program defensively throughout. For example, check for out-

of-range parameters, ensure consistency in data structures

and so on. Although the code is supposed to get this right,

double checking does no real harm and can be of huge

benefit in debugging. Some programming language

implementations support an assert facility which can be a

useful debugging aid.

Test repeatedly, effectively and intelligently.

5.1.2 Grammar Transformation for Top-
Down Parsing
In Sect. 4.​2.​3 several potential problem areas for top-down

parsers were mentioned. While designing a predictive top-down

parser from the grammar it is essential to check that the parser

stays predictive. This means that whenever there is an

alternative in the grammar, the lookahead can unambiguously

determine which of the alternatives to follow. In some cases,

factoring can resolve the problem but in other cases, the

grammar may need modification. In practice this seems to be a

rare problem.

Left recursion
is frequently found in programming language

grammars and dealing with it is usually a routine task. For

example, a production of the form is best handled by

rewriting the production in an EBNF style as and coding

the recogniser as follows:

The recursion in the original BNF production has been

replaced by iteration in the EBNF rule and implemented using a

while statement. It is of course also possible to deal with the left

recursion using the standard grammar transformation described

in Sect. 4.​2.​3 but in practice the minor reformulation as shown

above will suffice.

The problem of ambiguity has also already been mentioned.

The proper solution to this is of course to remove the ambiguity

from the grammar. But it may be possible to resolve the

ambiguity within the parser in an ad hoc way.

5.2 Bottom-Up
Parsing
The price paid for the potential power of bottom-up parsing is a

significant increase in software complexity, effectively making it

advisable to make use of parser generator tools, rather than

coding the parser directly in a conventional programming

language. Using these specialised tools certainly simplifies the

process, but it is important to have some knowledge of what is

going on in the operation of a bottom-up parser.

5.2.1 Shift-Reduce
Parsers
There are many different approaches to bottom-up parsing but

most of the practical and widely used implementations are based

on shift-reduce parsers. These parsers perform a single left-to-

right pass over the input without any backtracking. The parser

itself is simple and easy to code. It is the control of the parser

that is more challenging.

The shift-reduce parser implements just four basic operations.

The shift operation reads and stores a token from the input.

The reduce operation matches a string of stored tokens with

the right-hand side of a production rule, replacing the stored

tokens with the left-hand side of the production rule.

The accept operation indicates that the parse has

succeeded.

The error operation signals a parse error.

The problem, of course, is knowing when to shift, when to

reduce, when to accept and when to error. But before returning

to this issue of control it is sensible to consider an

implementation.

The natural way of implementing a shift-reduce parser is to

use a stack for the storage of input tokens and their

replacements from the left-hand sides of productions. Let us go

back to the familiar grammar for our trivial arithmetic language

in Fig. 4.​1, repeated here:

expr term> | expr> + term>

term factor> | term> * factor>

factor x | y | z

and suppose we wish to parse the sentence x+y*z. In this

example, we show the contents of the stack (which starts off

empty), the remaining input and the parser action (shift, reduce,

accept or error) at each stage. The base of the stack is on the

left.

Comparing this sequence of parsing steps with the rightmost

derivation of x+y*z from Sect. 4.​1.​1, we see that this parser is

producing the rightmost derivation in reverse, as expected for a

bottom-up parser.

This is all very well, but the choices of parser actions here

have been done without any explanation or justification. There

has to be a mechanism which, given the contents of the stack

and the input remaining, tells the parser whether to shift,

reduce, accept or error. We need to be able to identify the handle

—the next substring to be reduced. Plainly, relying on the

contents of the entire stack and all the input pending will result

in a parser which will be powerful but at the cost of excessive

complexity. At the other extreme, we can consider what happens

if the parser is controlled by the single token at the top of the

stack and the next token of the input (the lookahead token). We

can envisage a table indexed by the identities of these two

tokens and the content of that table tells the parser what to do.

This is the basis of precedence parsing
and provides a simple

parsing technique for just a restricted set of grammars. For

further details, see [4].

The design of this simple precedence parser gives us the idea

for a more general approach for designing shift-reduce parsers. A

table, indexed by stack tokens or a function of stack tokens and

also indexed by lookahead tokens is used to drive the parser. It

does not have to be a two-dimensional table. We can resort, for

example, to three dimensions, indexed perhaps by the token at

the top of the stack and two tokens of lookahead. But for reasons

of table size and code complexity, it makes sense to retain just

two-dimensional parsing tables. There are many different parsing

techniques that can be implemented in this way and they vary in

what indexes the tables, the size of the tables, the complexity of

the table generation process, the range of grammars the parser

can cope with, the difficulty of understanding the parsing

process and so on. The general LR (left-to-right, rightmost

derivation) parser can be implemented in this way, together with

variants such as LALR (look-ahead LR parser) and SLR (simple

LR). In these parsers, the table is indexed by the lookahead

token and also, in effect, by a value obtained from the identity of

the current left context. Many textbooks provide the theoretical

background—for example, see [5].

Setting up these tables by hand is in general a painful

process, time-consuming and error-prone. However, there are

now many practical bottom-up parser-generating tools which

generate complete parsers made up of the code to run the shift-

reduce parser together with the controlling table. These tools

make the construction of a reliable and practical parser very

much easier and it is the use of a popular member of this set of

tools that will be the basis of examples for bottom-up parsers in

this book. Compromising between table size and parsing power

means that most of these parser generators produce LALR(1)

parsers, certainly adequate to parse today’s programming

languages.

5.2.2 Bison—A Parser Generator
There is a long history of software tools to generate parsers.

Parsers were first studied in the very early days of computer

science and it became obvious that the complex yet logically

intuitive task of generating some types of parsers could be

automated. Perhaps the most famous of the early parser

generators is yacc [1] developed in the early 1970s. It generates

table-driven LALR(1) parsers in C. It was incorporated into the

Unix operating system distribution and used for the development

of other Unix software tools as well as in many other projects.

Yacc was not the first of such tools—yacc is an acronym for “yet

another compiler-compiler”, suggesting many predecessors. And

yacc is still in widespread use today, although many other more

recent tools have been developed to generate parsers in a range

of programming languages, accepting grammar specifications in

formats generally upwards compatible with yacc. Yacc was

designed to pair with lex , the lexical analyser generating tool.

Although these tools can be used independently they are often

used together when generating code for a compiler-related

application.

Bison [2] was developed as the GNU Project version of yacc. It

is designed to be upwardly compatible with yacc and includes a

few minor changes. It has been distributed widely. It too can

generate table-driven LALR(1) parsers in C but includes support

for other bottom-up parsing methods. Just as yacc was

transformed into bison, lex was transformed to flex and flex and

bison are often used together, with the syntax analyser

generated by bison calling the lexical analyser generated by flex

as a C function.

Why choose bison for the examples in this book? It is not a

recently developed tool, nor is it one of the most powerful parser

generators available. However, it is still very popular and in

widespread use in many existing and new projects. It is stable,

capable, comparatively easy to use, its syntax and style have

been adopted by other packages, it generates C (and we are

using C in this book), it has been ported to many architectures

and operating systems and there are many good examples of its

use freely available on the web. This book attempts to cover the

use of flex and bison primarily by means of examples. There are

many good reference manuals and tutorials for flex and bison

available on the web, together with text books such as [6, 7].

Before tackling the principles of developing bison grammar

specifications it may help to glance back to Sect. 3.​4.​1 where

there is a brief description of the input required by flex. At the

highest level, the input required by bison is identical, consisting

of three sections, separated by %% lines.

Furthermore, the ideas behind the rules are similar. The rules

consist of a list of patterns with corresponding C code. In the

parser that is generated, when a pattern is matched, the

corresponding C code is executed. But here, the patterns are not

regular expressions. They are instead grammar production rules

and these can be taken directly from the formal definition of the

language being parsed.

5.2.2.1 A Very Simple Bison Example

Let us return to a simple example, used earlier in this chapter (in

Sect. 5.1.1) to illustrate the top-down parsing of the grammar

from Sect. 4.​2.​3. Here again is the grammar.

We have already seen that parsing it using a hand-written

top-down predictive parser poses no real problems. Generating a

bottom-up LALR(1) parser using bison is straightforward too.

Again, we start with a recogniser rather than a full parser.

This file is passed through the bison tool and a C file is

generated. This C file is then compiled and when run produces

this output:

The bison code needs some explanation.

The three sections are clearly visible—definitions, rules, user

code. The definitions section contains declarations required

by the bison rules, but there are none needed in this

example. See below for the use of %token declarations. It

also contains C code to be copied directly to bison’s output,

contained between the symbols %{ and %}. This is a good

place for including header files and declarations required by

the C code in the actions in the rules section and in the user

code.

In this example, we include the function prototypes for

yyerror (called by the bison parser when a syntax error is

detected) and yylex (the lexical analyser function, returning

the next lexical token from the input each time it is called).

The rules section corresponds to the set of BNF rules defining

the syntax of the language. The syntax of the rules is

reminiscent of BNF, but a colon is used to separate the non-

terminal from its definition. In the rule defining the non-

terminal S the right-hand side of the definition indicates that

S is either an A followed by the character z or a single

character z. The | symbol is used as in BNF to indicate

alternatives. Because A is not enclosed in quote marks, it is

taken as a non-terminal and bison expects its definition to

appear in due course. In this grammar, x, y and z are all

terminal symbols because they are enclosed by single quote

marks. And because S is the first non-terminal to be defined,

it is taken as the starting symbol.

Each rule consists of a pattern and a corresponding action.

The idea is simple. When the bison-generated parser runs, it

matches these patterns with the input, controlled by the

parsing algorithm, and if a pattern matches, the

corresponding action is executed. Here, the actions are used

for tracing the execution of the parsing process. We will

worry about more complex actions later, specifically the

generation of the parse tree.

The final section of user code defines additional functions

required by the parser. Bison simply copies this section

straight to its output. The yyerror function is called by the

parser when an error has been detected and here we just

output a message. We will tackle the problem of error

reporting and recovery later in this chapter. The yylex

function is the lexical analyser. Here, it gets the next

character from the input, ignoring newline characters.

Although the original BNF grammar says nothing about

ignoring newlines they are ignored here to result in a slightly

cleaner user interface, removing the potential confusion

caused by the need for a newline to send an input buffer to

the running program when running interactively.

Finally the main function is defined. This calls the yyparse

function which is the bison-generated parser. If yyparse

returns the value zero, the parse has been successful.

Does the output from the parser look reasonable? If we

consider just the parsing of the xyz example, the rightmost

derivation is . When reversed, this

corresponds to the tracing generated by the parse of xyz, shown

above.

This approach is looking promising. The transformation from

BNF rules to bison rules does not seem too complicated and

once the nature of the definitions and user code sections have

been understood, the preparation of the complete bison input

should be manageable. But there are some significant practical

issues that have to be considered in moving from this simple

example to a parser for a more complex programming language.

The actions in this example are simplistic. We typically need

to do a lot more. Specifically, there has to be a mechanism

for passing data from the matching rules and the

corresponding action code. For example, if we wanted to

generate a node for the parse tree in the first rule of S’s

definition, the action code has to have access to a pointer

value corresponding to the tree already generated for the A

non-terminal. Fortunately, bison has a simple syntax for

specifying this, and it will be shown in the next example.

We have to think about error reporting and error recovery.

Looking at the top-down parser example for this grammar, it

is easy to see how to add helpful messages about expected

tokens, but that seems more difficult here.

The function yylex here is hand-written. Clearly, for more

complex languages, using flex to generate the lexical

analyser would be more sensible. The integration of flex

output with bison code is fortunately very simple.

It is important to spend some time checking that the original

grammar has been translated accurately into the bison

format. Errors can easily occur and can cause warnings

referring to shift/reduce or reduce/reduce conflicts, or worse,

can cause no warnings at all and a parser for the wrong

grammar is produced. These errors can be difficult to

diagnose.

At this stage it may be helpful to add a little explanation of

shift/reduce and reduce/reduce
conflicts, reported by tools such

as yacc and bison. The parsers generated by these tools are

implementations of shift–reduce parsers. If the grammar being

processed results in a parser where it is possible that both a shift

and a reduce are valid at a particular point in the parse, then a

shift/reduce conflict will be flagged. This indicates a form of

ambiguity in the grammar. Ideally it will be mended by modifying

the grammar appropriately. However, both yacc and bison have

special directives to permit ad hoc resolutions of this form of

conflict to be made. A reduce/reduce conflict also indicates

problems with the grammar. This type of conflict occurs when

there are two or more rules that can be applied to perform a

reduction on the same sequence of input. Again, modification of

the grammar is required.

Properly dealing with any such conflicts in a grammar is

important. But tracing the real cause of the problem from the

yacc or bison errors and making appropriate modifications can

be difficult. An understanding of the operation of a shift–reduce

parser can help.

5.2.2.2 A More Useful Bison Example

No practical description of the flex and bison tools is complete

without an example of a numerical calculator
. A conventional

grammar for arithmetic expressions, based on the example in

Fig. 2.​3 can be constructed as follows:

This grammar accepts a single expression terminated by a

newline character (). The expression uses brackets and the

standard integer arithmetic operators with the conventional

precedences.

This file (called calc.y) is processed by bison (bison calc.y

using the Linux command line) and a C file (calc.tab.c) is

generated. This C file is then compiled (gcc -o calc

calc.tab.c) and when calc is run it produces this output:

Again, this bison code needs some explanatory notes.

In the definitions section we define a global variable ival

which contains the value of the integer CONSTANT last read.

So when the yylex lexical analyser function returns the

token type CONSTANT, the syntax analyser has the value of

the constant available in ival.

The rules section define four non-terminal symbols—

calculation, expr, term and factor. In the action code for

calculation the final value of the calculation is printed, and

this value was passed back as the value returned by the

parsing of expr. Here we see a really important feature of

bison. Bison allows the return of a value from the recognition

of a symbol. In default the type of this value is an int but we

will see later that it makes sense to change this when we are

dealing with tree construction in the parser.

In this application we use this mechanism to pass back

integer values from the symbols CONSTANT, factor, term and

expr. In the rule calculation, the result is returned through

expr and this value is referred to in the action using the

symbol $1—the value from the first token (token number 1)

in the rule.

The next action (for the rule expr: term) passes the

value obtained from the parsing of term ($1) as the value to

be returned by expr ($$). Similarly, the action for the rule

expr: expr ’+’ term adds the values obtained via expr

and term and returns the sum through expr.

In the actions for factor, the value ival is returned

through CONSTANT and note that the value returned for ’(’

expr ’)’ is $2. The pseudo-variable $1 corresponds here to

the symbol ’(’.

The lexical analyser yylex looks for space characters and

ignores them. This is not strictly necessary because spaces

are not mentioned in the original BNF grammar, but ignoring

them seems like a sensible thing to do. If yylex encounters a

digit, it accumulates the value of the constant, leaving this

value in the global variable ival and returning the pre-

defined terminal CONSTANT. Note the use of

ungetc(ch,stdin) to backspace over the character

following the constant. This character will be read next time

yylex is called. The alternative way of managing this

situation is using a single character lookahead, but this

would add a little to the code complexity in this example.

Note also that we do not deal with overflow properly here.

The main program simply calls the parser.

There are some further practical issues here. This example

shows an easy way of implementing a numerical calculator

program. The rules section is built directly from the BNF

specification and there are no worries about left recursion

because this is a LALR(1) parser. It would be possible to add

other features, operators and functions, floating point arithmetic

and so on, but under these circumstances it would be sensible to

resort to a lexical analyser generated by flex.

One obvious shortcoming of this particular implementation is

that the program needs to be restarted for each new calculation.

Mending this is easy. We can just make the non-terminal

calculation a list of expressions separated by newlines. So

calculation can be redefined in BNF as

calculation calculation expr

Bison can cope perfectly easily with this form of production,

even with the use of an empty alternative. The first bison rule is

then replaced by:

and multiple expressions separated by newlines can be

entered. It is especially important to realise that in the

modification of the pattern we have introduced a new symbol

calculation and this means that the $1 in the action has to be

changed to $2. Unfortunately losing the correct correspondence

between symbols and the $n symbols in the action is a common

source of error in bison specifications and can result in parsers

that are difficult to debug. This is always worth double checking,

preferably before things start going wrong.

If an action is omitted, the default action of { $$ = $1; } is

normally applied automatically. However this may not be what is

always needed, and so always inserting an explicit action is

sensible.

The power and ease of use of bison and similar tools is

attractive and this approach to the coding of bottom-up parsers

has been used effectively in many compiler projects.

5.3 Tree
Generation
In the last two sections, examples of top-down and bottom-up

recognisers have been presented. But in a compiler, more is

required from the syntax analysis phase. There are some

compiler-related applications where the task can be completed

by simply adding code generation code to the recognising code.

For example, it may be possible for very simple programming

languages to produce target code, probably for some form of

virtual machine, directly from the recognising process. But for

the majority of compiled languages we will need a little more,

and the code that has to be added will generate the parse tree.

Generating a parse tree turns out (at least in theory) to be

simple. But before any code can be added to the recogniser, it is

vital to do some tree design first. In Sect. 2.​3.​3.​1, parse trees

and abstract syntax trees were illustrated. Clearly, the design of

the tree produced by the syntax analyser is controlled by the

formal syntax of the language being compiled, but the details,

specifically of which of the non-terminals and/or productions

should have tree nodes associated with them, have to be

resolved. In other words, we have to decide for each reduction

performed by the syntax analyser whether a tree node is

generated and if so, what data must that node include.

This can be made clearer using an example. Return again to

the simple arithmetic expression language from Fig. 2.​3.

expr> term> | expr> + term> | expr> - term>

term> factor> | term> * factor> | term> /

factor>

factor> integer> | (
 expr>)

integer> digit> | integer> digit>

digit> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

The abstract syntax trees for this language can be made very

simple, as in the example of Fig. 2.​4b. There are five different

types of node in the tree, one for each of the four arithmetic

operators and the fifth to hold a constant integer value. This

implies that only the following reductions from the grammar

cause actual tree nodes to be generated:

expr> expr> + term>

expr> expr> - term>

term> term> * factor>

term> term> / factor>

factor> integer>

We have made an obvious and reasonable simplification here by

regarding an integer as a lexical token, thus not requiring the

structure of an integer to be encoded into the syntax tree.

Furthermore, for this example, parentheses are not required in

the tree either. These are used for syntactic grouping and their

effect is automatically included because of the way in which the

tree is constructed.

The actual code required to construct the tree fortunately

turns out to be simple. We have already seen (Sect. 5.2.2.2) how

a bottom-up recogniser for these arithmetic expressions can be

coded using bison. This code can be augmented as follows to

generate a tree rather than evaluating the expression on the fly:

This code assumes the availability of a function newnode

which generates a new node for the syntax tree. Each of these

nodes contains four fields. The first field contains an integer

constant (N_PLUS, N_MINUS, N_MUL, N_DIV or N_INTEGER)

indicating the type of the node. If the node has type N_INTEGER

(i.e. it contains an integer constant) the second field contains the

value of the integer constant and zero otherwise. The third and

fourth fields contain links to the left and right subtrees,

respectively. For example, the syntax rule expr ’+’ term results

in a node being created with type N_PLUS, a zero second field, a

third field (the left subtree) pointing to the tree generated for the

expr and a fourth field (the right subtree) pointing to the tree

generated for the term. Once the reduction of expr ’+’ term

has been completed, newnode is called and the result returned

by newnode is passed back to the calling rule.

Similarly, when an INTEGER is reduced, a new node of type

N_INTEGER is created, the value of that integer constant (in this

case placed in the C variable ival) is placed in the node and the

link to the node is returned to the calling rule.

As the parse proceeds, the tree is constructed node by node,

the linking of nodes being driven by the order in which the

reductions are performed. A full example of this technique can

be seen in Sect. 5.4.2.

A very similar approach is taken for the top-down approach.

The recogniser can be transformed into the complete parser by

adding the code to generate tree nodes. Each time a construct

requiring a tree node is recognised, a call is made to a function

to allocate space for a new node, the fields are filled in

appropriately and the recognising function passes back a link to

this node to its caller. For example, suppose a grammar contains

the production . The recogniser would then have the form

To add tree generation, it would make sense to modify these

recognising functions to return a pointer to the subtrees they

generate. The code would then look like this:

Here, the type astptr represents a pointer to a node in the

tree, and we assume that the node for this structure P has three

fields, the first identifying it as representing a structure P, the

second pointing to the subtree for Q and the third pointing to the

subtree for R.

Dealing with the recognising code generated from EBNF

productions of the form is not difficult but has to be

done after deciding on the structure required for the resulting

tree. Examples of tree generating code for top-down parsers is

shown in Sect. 5.4.1.

5.4 Syntax Analysis for DL
The BNF of DL is shown in the appendix. The process of

transforming this grammar into a syntax analyser, top-down or

bottom-up, should be uncomplicated, especially if the code is

developed in a structured and step by step way. However, there

are inevitably some trickier aspects, and these will be

highlighted in the sections below.

The aim here is to develop two syntax analysers for DL, the

first using a hand-written top-down approach and the second

using bison to generate a bottom-up parser. The syntax

analysers should generate identical outputs for feeding into the

next phase of compilation. The top-down parser here has been

combined with a hand-written lexical analyser and the bottom-up

parser is used with a flex-generated lexical analyser.

5.4.1 A Top-Down Syntax Analyser for DL
DL has been designed to have a simple but not trivial syntax,

without any structures which could cause any significant

difficulty to a top-down predictive parser. However, there is

sufficient complexity to require some careful planning before

coding.

Tackling the implementation of the front-end of a DL compiler

raises some important issues.

Lexical analysis—let us assume here that the lexical analyser

is complete and well-tested. We should also know in detail

how the tokens from the lexical analyser are structured,

encoded and passed on to the syntax analyser. This issue

has already been covered in Chap. 3.

What are we expecting the syntax analyser to produce?

Traditionally the next phase of compilation is likely to require

a syntax tree and this is what will be produced in these

examples. Clearly, debugging output is required too. This

should include a trace of the execution of the parsing

process together with a human-readable version of the tree

(to be checked in the testing phase) and the contents of

other front-end data structures such as the symbol table.

What should the tree look like? It is essential to produce a

list of node types in the tree and decide what data each

node should contain. This should largely be driven by the

non-terminal symbols defined in the grammar of DL.

How reliable would we like error recovery to be? Always

getting it right, whatever that means, may not be feasible.

But error detection should always work.

How should names/symbols be handled? A symbol table
is

essential. What has to be stored for each symbol? What

about data structures? Do we need a hash table or some

form of binary tree, or will simple linear search be adequate?

Are there issues concerning the handling the scopes of

names?

Fortunately DL’s symbol management is not too

challenging. Names in the symbol table refer to a function or

to an array or to a variable. So there are just three distinct

types. There are a few other items of information to store for

each symbol and these will be covered later but each symbol

entry can be represented by a simple C struct. As names

are declared they are inserted into the symbol table and

whenever a name is used, it is looked up in the symbol table.

But there is a slight complication here. DL allows the

declaration of variables within functions so that in code of

the form:

the variable v1 will be placed into the symbol table twice and

the correct one has to be found each time it is used.

Fortunately, there is an easy way of managing this. If the

symbol table is structured as a stack
, linear search starting

at the top of the stack can be used for symbol lookup.

Looking up v1 within function f will find the entry nearer the

top of the stack. If another variable v2 is declared globally,

searching for v2 within the compilation of f will also succeed.

This may well not be the most efficient way of managing a

symbol table, but it is certainly simple. Maybe with such a

simple language, we do not expect huge programs to be

written so the overhead of linear search is not a problem.

Symbol tables are covered in more detail in Sect. 5.6.

Tackling the top-down syntax analyser for DL should follow

the steps outlined in Sect. 5.1.1.1—check the lexical analyser,

write a recogniser, add tree generation code, add error recovery,

test. During this process there will be a need to include various

other utility functions such as symbol table management, syntax

tree management (particularly printing the tree) and so on. We

have already discussed the testing of the lexical analyser and in

this section we examine some of the key aspects of the

subsequent steps.

5.4.1.1 Writing a Recogniser

A recognising function should be written for each of the non-

terminals in the BNF grammar. Fortunately there is little in the DL

grammar that needs special attention in its translation from BNF

rules to recognising code and the approach presented earlier in

this chapter can be adopted. We can examine here any special

issues for the functions recognising individual non-terminal

symbols.

Looking further on in the grammar, it can be seen that a

 must start with a { token. This enables the correct

alternative in the definition of to be selected using

the single token lookahead. The global variable token

contains the current lexical token returned by the lexical

analyser (the function lex()). The function syntrace simply

outputs its argument if the value of a global tracing flag is

set TRUE. This allows simple turning on or off of the tracing

of the recogniser’s execution. Here, the message is output

when the recognising function is entered. It is perfectly

possible to output the message instead when the recognition

has been successfully completed.

It is clear that the BNF rule defines declarations to

be a sequence of one or more declaration . But what

terminates this sequence? Looking at the definition of

, a must start with an int token

from or an from a

. But maybe a slightly clearer approach is

to stop when the token following is found. This

is just the token { (which starts a).

The definition of has two alternatives, both

starting with the token . A factoring

transformation can formalise the implementation of a

recogniser here, but it amounts to the same thing as coding

the an and then looking for a following [token.

In this code the function error is called, outputting the

error message and then, for now, causing the program to

stop. We will worry about error recovery later. Note the

explicit calls (token=lex();) to the lexical analyser to

maintain the single token lookahead throughout.

Handling a

statement is recognised if none of the other alternatives can

match. In this case control just falls through the

statement() function.

Finally we should include an example of a left-recursive

production. The rule shows that is

both a binary and unary operator. As usual, we deal with the

left recursion by replacing it by iteration.

Not all the non-terminal symbols in DL’s BNF grammar need

to have corresponding recognising functions because sometimes

the recognition can be done more easily and transparently where

they are used in other recognising functions. For example, there

is no real need for explicit recognising functions to be written for

 or .

The tracing of the execution of the parsing of the very simple

DL program shown in Fig. 5.1 illustrates the order in which the

recognising functions are called.

Fig. 5.1 A very simple DL program

The output from the recogniser when parsing this simple

program should be something like this:

Checking this output by hand is plainly tiresome for anything

but the most trivial of programs. It may be better to leave more

extensive testing to the next stage, once the tree has been

generated.

5.4.1.2 Tree
Generation

We have already seen in Sect. 5.3 that the principles of adding

tree generation to the recognising code are easy, but there are

inevitable complications. Each recognising function has to be

modified so that it returns a pointer to a tree node corresponding

to the syntactic structure it has just recognised. The linking of all

these nodes takes place as the parsing proceeds, thus ending up

with a complete parse tree.

The first step here is to design the tree, specifying all the

different node types and what each node should contain.

Typically, there should be one node type for each of the non-

terminals in the grammar, but in practice there is no need for

some of these non-terminals to appear in the tree since they are

just not needed for the generation of target code. Also it may be

possible to simplify the tree and hence its further processing by

making minor changes to the way in which the grammar is

represented. For example, the node for the BNF rule

node with three subtrees, storing the and

 with the

 node so we can use two different nodes labelled with

plus and minus both having and subtrees.

However, remember that there is not just a single correct tree

design.

Turning now to the specific task of the design of a tree for DL,

we can propose a set of node types based on a subset of the

non-terminal symbols. In this design each tree node is made up

of a fixed number of fields. This simplifies the implementation a

little and is fine for a compiler for DL. Each node contains an

integer value indicating the type of the node, an additional two

integer values and three pointers to be used to point to

subnodes. The integer field astdata2 is used where needed to

indicate whether a variable has been declared locally or globally.

This will be described in detail later. A list of these node types is

shown in Table 5.1.

The tree nodes are declared as follows:

Table 5.1 Parse tree nodes

Node type Data Pointer 1 Pointer 2 Pointer

3

N_SLIST (Statement list) – Next

statement

– –

N_ASSIGN (Assign to variable) Variable

location

Expression – –

N_PRINT (Print expression) – Expression – –

N_UMINUS (Unary minus) – Term – –

N_PLUS, N_MINUS, N_MUL, N_DIV

(Arithmetic operators)

– Term or

factor

Term or

factor

–

N_EQ, N_NE, N_LT, N_LE, N_GT, N_GE

(Relational operators)

– Expression Expression –

N_CONST (Integer constant) Constant

value

– – –

N_ID (Variable identifier) Variable

location

– – –

Node type Data Pointer 1 Pointer 2 Pointer

3

N_ARRAYREF (Array reference) Array

location

Expression – –

N_ARRAYWRITE (Assign to array

element)

Array

location

Index

expression

Rhs

expression

–

N_FUNCTION (Function definition) Function

location

Argument list Block –

N_FNCALL (Function call) Function

location

argument list – –

N_ARG (Argument list) – Argument

expression

Next in

argument list

–

N_RETURN (Return from function) – Expression – –

N_READ (Read to variable) Variable

location

– – –

N_WHILE (While statement) – Bexpression Block –

N_IF (If statement) – Bexpression Then block Else

block

N_FUNCTIONDEC (Function definition

chain)

– Function Next in chain –

To illustrate this tree structure we can return to the simple

program of Fig. 5.1. The generated tree is shown in Fig. 5.2. The

parser keeps a pointer to the main block and a separate pointer

to the chain of function definitions. Here, the chain is empty

because there are no functions in the program.

Fig. 5.2 Tree from the program of Fig. 5.1

Enhancing the recognising code to add tree generation is

illustrated by the code for handling . The function

expression() returns a pointer of type astptr to its caller and

this returned result points to the complete tree representing the

expression.

This code needs a little explanation. The BNF rule for

 has been rewritten as the EBNF equivalent

The code stores any leading sign (plus in default) and then calls

term(). The tree generated by term() is saved in pfirst and if

that term was preceded by a unary minus, a unary minus node is

inserted. Then, each time an adding operator followed by a term

is found, a new node is generated containing the adding

operator found, with the expression so far as the left-hand side

and the new term as the right hand side. Note that this ensures

the left-associativity of the adding operators. The newnode

function obtains memory space for a new tree node, large

enough to contain the node’s type, an integer value and three

pointers to other nodes. As seen in this code, the N_UMINUS node

requires one pointer and the N_PLUS and N_MINUS nodes require

two pointers.

A similar example handles the while statement.

The N_WHILE node combines two subtrees, one from the

 and the other from the target of the while.

An important issue concerns the parse tree and variable

declarations. In DL there is no need to put variable declarations (

) in the parse tree. When a variable is

declared, the information about that variable is stored in the

symbol table
. This information includes the text representation

of the symbol, its type (integer, array or function), its size if an

array and for integer variables and arrays the runtime location of

the storage used for that variable. A reference to a variable in

the parse tree just needs its runtime storage location. After the

parsing process there is no need to know the text name of the

variable. We will be looking at runtime storage issues later in

Sect. 5.6

Variable name management in the syntax analyser for DL

therefore requires that:

on declaration, insert the variable name into the symbol

table, including type and size if necessary.

on encountering the use of a variable, look up that variable

in the symbol table. If it is not there, then an error is

reported (variable not declared) and if it is there, then the

runtime storage location stored in the symbol table entry is

copied to the parse tree. A pointer to the symbol table entry

could be stored in the tree instead.

5.4.1.3 Error Detection and Recovery

The error detection code is already present in these examples. It

is easy and natural to incorporate it with the recognition code as

it is being written. However, error recovery has not been

specified, but an error function has already been presented

above where the action is to output the error message and then

exit from the program. We need to do better and this is

discussed in Sect. 5.5.

5.4.1.4 Utility Functions

To support the lexical analysis, the syntax analysis and the tree

generation, we need a set of utility functions to perform various

general tasks such as symbol table management, space

allocation and initialisation of tree nodes, tree printing and other

debugging operations such as tracing the execution of both the

lexical and syntax analysers.

Printing the tree can be a little awkward because something is

required during the debugging stages to enable the tree to be

verified by eye. A simple approach is to write code to perform a

conventional pre-order traversal of the tree where the node

identity is output, followed, recursively, by the children of that

node. For example, the output for the program of Fig. 5.1

presented in this way appears as:

This is obviously not as clear as the graphical tree of Fig. 5.2

but the traversal code is easy to write and with some practice,

this format is not too difficult to comprehend. An alternative

approach is to get the compiler to generate control commands

for some text processing/graphics program which has facilities

for the generation of neatly presented trees.

The code in function printtree to generate this human-

readable tree is based on a large switch statement with a case

for each of the node types. An example of this code shows how

to deal with the node for the if statement:

The second argument to printtree is a tree depth, used to

control the printing of the leading layout characters on each

output line.

Managing the symbol table implemented in the form of a

stack poses no real problems. Functions for symbol insertion and

symbol lookup need to be coded, and a function to output the

entire contents of the symbol table can be a useful debugging

aid.

5.4.1.5 Testing

The front-end code has to be systematically tested in stages.

Clearly, validating the output for a large range of test programs,

including difficult examples, is essential. It is possible to use a

software tool to generate random syntactically correct DL

programs from the BNF grammar and these can all be put

through the front-end. The trees thus generated could also be

verified, perhaps automatically.

Including tracing code can also help verify that all is well. And

keeping this tracing code available throughout the compiler’s

development will help debug problems found later in the project.

Testing is not easy and perhaps the most important point is

that it is essential when scheduling a compiler project to allow

sufficient time for this phase of development. Just checking that

a “Hello world!” program works is definitely not adequate.

5.4.2 A Bottom-Up Syntax
Analyser for DL
Most of the issues discussed in the last section on top-down

syntax analysis apply just as well to a bottom-up approach. Our

aim here is to make use of the lexical analyser already discussed

in Chap. 3, generated by flex from regular expressions defining

the syntax of DL’s lexical tokens, and then to use bison to

generate the complete syntax analyser. We hope to be able to

generate an identical tree to that produced by the top-down

parser.

The task of producing a bottom-up parser follows the same

steps as for the top-down parser. Firstly, ensure that the lexical

analyser is working, then code a recogniser, add tree generation,

add error recovery and test throughout.

The lexical analyser for DL written using flex has already been

developed in Sect. 3.​4.​1.​2. The code generated by flex will be

combined with the code from the bison-generated syntax

analyser to produce the complete front-end. Many of the design

decisions have already been taken because there is much

commonality between the top-down and bottom-up parsers. For

example, all the symbol table functions, the tree manipulation

code (creating and adding nodes, printing the tree) and the

execution tracing can be used without change. However, moving

from a traditional top-down LL(1) parser to a much more

powerful LALR(1) bottom-up parser has some consequences,

particularly in the way in which the tree is constructed. But

before any tree nodes are generated it makes good sense to

develop a recogniser and this is where the power of a syntax

analyser generating tool is particularly apparent.

5.4.2.1 Writing a Recogniser

Recall
that the input to bison consists of three sections—

definitions, rules and user code, separated by %% lines. For the

recogniser, the definitions section of the bison input has to

declare the named tokens returned by the lexical analyser. The

complete definitions section therefore looks like this:

The header file dlrecog_defs.h defines any function

prototypes required and can contain #include directives for

other (system) header files. The %token declarations correspond

to the tokens used in the lexical analyser (see Sect. 3.​4.​1.​2). In

these examples, we are using a naming convention where

terminal tokens are in upper case and non-terminals are in lower

case.

The bison rules for the recogniser are derived easily from the

BNF rules defining DL. The correspondence between the two sets

of rules should be very close. For example, the BNF rules for

 and in DL

are:

These BNF rules are translated into bison rules as follows. The

syntrace function is there to trace the execution of the syntax

analysis and can be as simple as just outputting its string

argument.

Once the full set of bison rules has been produced, the

section is terminated with a %% line. The bison input file is then

completed by adding the definitions of three functions:

The function yyerror is called if a syntax error is found. The

generated parser/recogniser is called by yyparse() in the main

program.

It is important to understand how the lexical and syntax

analysers are combined. In particular, the names declared in the

%token declarations in the syntax analyser specification must be

accessible in the lexical analyser. Taking the specific example of

this recogniser for DL, we start off with three files—the lexical

analyser specification file (dlrecog_lex.l), the syntax analyser

specification file (dlrecog_syn.y) and the header file

(dlrecog_defs.h). When the file dlrecog_syn.y is processed by

bison, a new header file (dlrecog_syn.h) is generated,

containing information about the %token declarations and so on.

This header file has to be included in the code generated by flex.

So the #include directives that have to be explicitly coded are:

dlrecog_lex.l has to contain #include dlrecog_defs.h

and also it must contain the line #include dlrecog_syn.h

dlrecog_syn.y has to contain #include dlrecog_defs.h

This task of generating a recogniser may turn out to be very

simple, but it is important to do it before tackling further steps

such as tree generation. It forms a good check on the

correctness of the grammar and if shift/reduce or reduce/reduce

errors are reported these problems should definitely be

investigated.

5.4.2.2 Tree Generation

Adding tree generation code to the recogniser can be a little

tricky for some constructs. The rule is, after the tracing code, to

include a call to a function to generate and initialise a new node

for the tree. We have already seen how this can be done in

Sect. 5.3.

Our aim in this example is to produce the same tree as

generated by the DL top-down parser, already described. This

can be done by including the functions already developed for the

top-down parser for DL for symbol table and abstract syntax tree

management and building on the rules in the bison recogniser.

The additional code in the rules has to generate and link tree

nodes and it also has to access and manipulate data in the

symbol table.

One of the more significant changes in moving from a

recogniser to the implementation of full tree generation is that

the bison rules now have to return data to their calling rules.

Normally, the data type returned will be a pointer to a tree node,

but it is usual that other data types will be needed too. For

example, a rule to recognise an identifier may return the

identifier as a string. Bison allows the user to specify a union

type to cover all the possible data types to be returned via the

terminal and non-terminal symbols. In our implementation for

the parser for DL, the specification is

and this allows integers, tree pointers and strings to be

returned via rules. But to do this, the actual single type returned

by each of the terminal and non-terminal symbols has to be

specified in the bison input. Therefore, in the definitions section,

terminal symbols have to be declared (with their type) using

%token and non-terminals are given a type using the %type

declaration.

The design of the tree has already been presented in

Table 5.1. For many of the non-terminal symbols, the

construction of the corresponding tree nodes is easy. For

example, the rule for the conditional statement is:

Most of the statement types of DL are converted to their tree

nodes in this general way. Another example is the handling of

expressions:

In this example, the first part of the rule, corresponding to the

BNF rule

uses the value returned through addingop as the node’s type

(either N_PLUS or N_MINUS), the expression as the left subtree

and the term as the right subtree. There is no need to worry

about associativity because this is handled automatically by the

parser and the way in which the grammar is phrased. For the

BNF rule

 a

unary minus node is created (or no new node if the addingop is

N_PLUS).

Lists often appear in the designs of programming languages.

For example, the statementlist rule is

Care has to be taken with such lists to ensure that the items

in the list are placed in the tree in the right order. Drawing

pictures helps to get things correct.

There are some constructs where more complex actions are

required. For example, consider the handling of the

, defined as:

To deal with this, the syntax analyser has to parse all the

individual components, place the in the symbol table

(as a function name) and then it has to ensure that the state of

the symbol table is saved before any new declarations from the

function are inserted, so that at the end of the parsing of the

function, the local variables can be removed by reinstating the

symbol table. It is immediately clear that this action of adding

the function name to the symbol table cannot be done at the end

of the parsing of the because at that stage,

the has been parsed. Fortunately bison has a

useful feature that resolves this problem, shown in the code and

description below.

The code following identifier ’(’ is executed at that stage

in the parsing process, specifically before the arglist has been

parsed. Since in this version of the parser, the symbol table is

organised in the form of a stack, just a single stack pointer has

to be saved at the beginning of the compilation of the function

and restored at the end. Further discussion of the issues

concerning runtime storage of DL variables appear in Sect. 5.6.

Dealing with declarations does not require new nodes to be

placed into the tree. Here, we need to be manipulating the

symbol table instead:

Why is identifier rather than IDENTIFIER used in this

example above? According to the naming convention,

IDENTIFIER is a terminal symbol (and indeed is returned by the

lexical analyser) and identifier should be a non-terminal. The

reason for doing this is shown in the definition of factor:

In this simple rule and action, once the entire factor is

recognised, the node for the tree is created and returned. If

IDENTIFIER had been used instead, the code of the rule’s action

would have no access to the text string corresponding to

IDENTIFIER assigned to a string variable in the lexical analyser,

especially if the expression contained other identifiers. This

problem is resolved by defining identifier as a non-terminal

which returns a copy of its text representation as its result. The

same applies to the terminal token CONSTANT:

Finally, the main program has to initialise global variables

such as the top of the symbol table, the first virtual location for

the storage of variables, and so on, and then call the bison-

generated parser yyparse().

5.4.2.3 Error Detection and Recovery

If
the bison
-generated parser encounters a syntax error, the

function yyerror is called. This function is normally provided by

the bison user and allows an error message and other

information to be output. The automatically generated error

message is normally “syntax error”, a message not sufficiently

helpful for most applications. yyerror returns to the parser and

it tries to recover from the error if error recovery has been

specified, and the parsing continues. Otherwise the parsing

terminates. Ignoring error recovery is adequate for some

applications and even for initial testing of a parser. However, the

addition of some very simple error recovery may make the

parser much more useful.

An easy and possibly acceptable action on detecting an error

is to skip input tokens until a semicolon or close curly bracket is

found and then regard that as the end of a statement. Then

parsing is allowed to continue. This can be done by augmenting

the set of rules for statement to include the rules

The use of the error token attempts to re-synchronise the

input with the DL rules so that parsing may continue. Plainly this

will not always work perfectly, but it usually does a good job.

5.4.2.4 Utility Functions

The utility functions used in the bottom-up parser are largely

identical to those already described for the top-down parser.

Specifically, tree generation and manipulation need no

modification at all. The use of a bison parser needs a few small

functions to be added and these have already been described.

5.4.2.5 Testing

Approaches to testing are the same as with the top-down parser.

Checking that the language’s grammar has been correctly

transliterated into bison rules is a good first step, ensuring that

the pseudo-variables $1, $2, etc. are being used correctly. Bison

provides a set of tracing and verbose error reporting facilities.

These may help, if desperate.

5.4.3 Top-Down or Bottom-Up?
Choosing between a hand-written top-down predictive parser

and a machine-written bottom-up parser is not always easy.

Issues to be considered include the following:

The bottom-up approach requires the availability of an

appropriate software tool generating code in a form and in a

programming language that can be integrated with the rest

of the project.

Using parser generator tools is sometimes demanding

because there may be aspects of the language’s grammar

requiring implementation skill and maybe even syntax

modification to fit in with the constraints of the generator

tool. Fortunately this rarely seems to be an issue.

The use of a parser generator tool can save a great deal of

time in generating parsing code directly from a version of the

language’s grammar. Implementation issues for difficult

aspects of the grammar are essentially hidden. It is therefore

likely that the parser will be somewhat more reliable than

the hand-written top-down parser.

The hand-written top-down approach makes it easier to

introduce code hacks to deal with particularly awkward

aspects of the translation process, for example dealing with

some aspects of context sensitivity. Dealing with such issues

in the more formal framework imposed by a parser tool may

be much harder.

The bottom-up approach permits the use of more powerful

grammars (for example, LALR(1) versus LL(1)).

Efficiency, in terms of execution time and runtime storage

requirements, is unlikely to be an issue in either approach.

All parsing methods may require particular modifications to

be applied to the language’s grammar.

The hand-written top-down predictive parser should be easy

to write, easy to understand and hence easy to modify and

maintain. The internals of the bottom-up parser are much

more obscure. But there should be no real need to ever

examine the code generated by the bottom-up parser

generator tool.

In the case of coding a parser for DL, there seems to be little

difference in implementation efforts and time for the two

approaches. The language is simple and straightforward and

causes neither implementation route much difficulty. The

numbers of lines of source code are comparable. For larger

languages the advantages offered by the use of a parser

generator may become more apparent. Furthermore, the choice

of an implementation method is made more complex because of

the availability of a large number of parser-generating tools,

both bottom-up and top-down, with a wide range of different

characteristics.

5.5 Error Handling
Errors are detected in all stages of compilation. We have already

seen how errors can be detected and reported by the lexical

analyser. Errors detected in the syntax analysis phase are

examined in this section. And in the next chapter, semantic

errors such as type errors will be discussed. There are also, of

course, errors detected when the program generated by the

compiler is run. The program might fail with a runtime error such

as dividing by zero or it could just give wrong answers. These

errors suggest problems with the program being compiled rather

than with the compiler.

Detecting an error in syntax analysis triggers the production

of a message indicating the nature and approximate location of

the error. All parsers should be able to produce an informative

error message, but providing a precise location of the error

(rather than where it was detected) is not always possible. For

example, consider the C code:

This will probably cause a compilation error of a missing

semicolon to appear when the line b = 1; is parsed, despite the

fact that the error was actually on the preceding line. In practice,

this is not a serious problem for the seasoned compiler user.

But error recovery is the key problem. The traditional batch

view of compilation—compile, get a list of all the errors, edit the

source program accordingly, re-compile—does not apply in all

circumstances. In an interactive program development

environment it may be much better to flag syntax errors as the

source program is typed in. There is no real need for full error

recovery here. After the user corrects the error, compilation

continues (or even restarts). But in most compilers, error

recovery is required.

There are several ways in which error recovery can be

tackled, but none of them are perfect. The aim is to somehow

eliminate or even correct the construct causing the error and

then continue with the parsing.

It may be possible to augment the grammar of the language

being compiled using production rules which explicitly

recognise specific syntactically incorrect constructs. For

example, it may be possible to include an extra rule to

recognise an if...then...else construct with a missing

then. An appropriate message is output and a tailored error

recovery can be achieved. If the grammar of the language

contains syntactic redundancy then this approach may be

partially successful, but the additional rules have to be

designed carefully to avoid introducing ambiguity into the

grammar.

Inserting additional tokens or making minor local

modifications to the input once an error has been detected

may help, for example by inserting an additional close

parenthesis at the point where the parser was expecting a

close parenthesis and some other token was found. However

this may cause further problems later in the parsing process.

This approach is difficult to get right.

A much more structured approach involves regular checks to

make sure that the parser stays synchronised with the input

at all times. For example, consider the predictive top-down

parser with a recognising function for each syntactic

construct. Code is introduced at the beginning of each

recognising function to ensure that the current lexical token

is a member of the FIRST set
. This is the set of tokens than

can validly start the construct being recognised. Similarly, at

the end of each recognising function a check is made to

ensure that the current lexical token is a member of the

FOLLOW set. This is the set of tokens than can validly follow

the construct being recognised. Determining the FIRST and

FOLLOW sets for the non-terminal symbols in a grammar is

not difficult. For example, in DL, a simple scan through the

grammar shows that an , (, a

constant or an identifier. This is the FIRST set for .

The recognising function is also passed a set of tokens

(TERMINATE) that the caller of the function feels should act

as additional terminators for the recognition process. For

example, in DL, an if token could be considered to

terminate an expression. The caller of the function is

responsible for recovering if a symbol in TERMINATE is found.

If the check at the start of the recognising function fails, an

error message is output and recovery is achieved by skipping

until a symbol in FIRST TERMINATE is found. Similarly, if

the check at the end of the recognising function fails, an

error message is output and the function recovers by

skipping until a symbol in FOLLOW TERMINATE is found.

This technique is called panic-mode error recovery and it can

be very effective.

Parser generator tools such as bison have features to help

handle errors. Bison supports the error token and this

allows control to be returned to the parser so that error

recovery can be achieved. When an error has occurred, the

error token will match, allowing rules of the form

statement: error’;’ to be written. This causes tokens to

be skipped (matched by the error token) until a semicolon

has been read.

This is a powerful feature, but not easy to get right.

Having a large number of rules with the error token will

result in a fragile parser. Instead a small number of error

rules at a high level in the grammar is much more likely to

succeed. The bison documentation contains much useful

practical advice.

Experimentation is plainly involved here, adding recovery

actions until something acceptable has been produced. We all

have horror stories of inappropriate error messages or poor

recovery actions in our favourite compiler. Presenting error

information in a form that is useful to the programmer is the aim

—a universal and rather unhelpful message saying “syntax

error” is produced surprisingly often.

Finally, it is important to avoid the parser making attempts to

correct the error
. In the history of programming language

implementation, there have been many cases of the compiler

making a correction to the source program as the error recovery

action, issuing a warning message and the programmer ignoring

the message. It may be that the correction was not what the

programmer had originally intended.

5.6 Declarations and Symbol Tables
Before
leaving the topic of syntax analysis we must look at the

issues of the handling of declarations and the management of

names and other symbols. DL has a very simple view of names.

In DL a declaration refers to a simple (integer) variable, a single-

dimensional integer array (with a size known at compile time) or

a function (returning a single integer value).

Designing the data structure for a compiler’s symbol table

can be a difficult task. The idea that the symbol table is a simple

two-dimensional table containing the text representation of the

symbol and a small amount of other information is,

unfortunately, far from the truth. There are many issues to be

considered, including:

Symbol table lookup normally uses the symbol name as a

key. What is an appropriate underlying data structure to

support the lookup? Hash tables
may be a good plan, but

simple binary trees are unlikely to work well because of the

alphabetically clumped nature of names used in real

programs.

Is there a maximum length for names? What precisely is the

character set allowed for names? Are upper and lower case

letters equivalent?

How should type information, if any, be stored? For

languages supporting a small and fixed number of types

such as DL, then a single field can be set aside in the symbol

table entry to hold an indication of the type. For languages

where, for example, types can be user-defined such as C, a

more powerful approach is required, such as using a parse

tree of the type specifier. The data structures used for

storing type information must allow decisions of type

compatibility and so on to be made easily later in the

compilation process.

What are the scoping rules? In languages where variable

names can be multiply defined, for example where

declarations are local to the block and blocks can be nested,

the symbol table has to support the identification of the

correct instance of the name. A declaration in an inner block

can hide a variable with the same name defined in an outer

block. As we have seen, in DL, a stack-based symbol table

may help to resolve this requirement.

Can a name be used for multiple purposes? For example, in

DL, is it possible to have declarations in the same scope for

symbol x of the form int x, int x[3] and x being defined

as a function? In DL this results in no ambiguity because

when a name is used it is clear that the name refers to a

variable, an array or a function. Other languages may be

more strict (and sensible!).

The symbol table entry has to include, directly or indirectly,

information on where the storage associated with the symbol

is going to be located at runtime. Furthermore the storage

size of the object associated with the name will be needed,

although this may be implicitly or explicitly available via the

type information. Storing some sort of target machine

address is plainly inappropriate because at this stage in

compilation the code should really be target machine-

independent. Storing some form of virtual address is the

right approach and this can then be translated at a later

stage of compilation into a machine-oriented way of

accessing the right symbol. This will be examined later in the

context of code generation.

There are a few further DL-specific issues concerned with

managing the scoping of names. DL allows the code in a function

to have access to the local variables as well as the global

variables not having duplicate names that have been declared so

far. This can be handled easily using the stack-based symbol

table so that on entry to the compilation of a new function, the

current index of the top of the symbol table is saved and the new

symbols are placed in subsequent entries. When a symbol is

referenced in the compilation of the function, the stack is

searched down from the top and the correct entry for that

symbol is found, be it local or global. On exit from the

compilation of that function, the top of the stack pointer is

restored, effectively removing the local variables from the

symbol table.

The DL symbol table must also include a flag for each symbol

to indicate whether it is a local or a global variable. This is

needed because we have to distinguish between the local and

global variables in the intermediate code generated by the

semantic analysis phase. This is covered in Chap. 6.

For symbols referring to DL functions, we have to store some

value to allow the identification of the correct function at

runtime. Also a value indicating the total number of local storage

locations required by the function has to be stored because this

will be important later in code generation. Fortunately, in DL, this

value is known at compile time. Dynamic arrays are not allowed.

Also the number of arguments in the function’s definition should

be stored. This will allow a check to be made that the right

number of arguments are being supplied on each call.

5.7 What Can Go Wrong?
Hopefully, when implementing the lexical and syntax analysers

in a compiler for a real programming language, no severe

problems should be encountered. Today’s programming

languages are well suited to analysis using standard parsers and

in most cases a formal grammar is available which can be

translated into a specification for a parser-generating tool. It may

be that coding a top-down predictive parser by hand is difficult,

requiring significant grammar rewriting, so that using a LALR(1)

bottom-up parser may be a better plan. However, it is likely that

some aspects of the implementation of the analysis phase will go

wrong. It is important to be prepared for this.

There may be problems directly attributable to the language’s

grammar. Has the grammar been designed with a more powerful

parsing method in mind? Ambiguities and other errors in the

grammar must be investigated. Relying on the parser generator

to get it right automatically in all such circumstances is a very

bad idea.

It is not unusual for things to start going wrong with the

management of names. For example, the grammar of C

presented in [8] defines

typedef-name: identifier

and also uses identifier in the definition of a conventional

variable declaration. In parsing C, the lexical analyser will return

an identifier but the syntax analyser cannot tell whether this

identifier is a type name or a variable name. The lexical analyser

really needs context information to determine whether the

identifier has already been defined in a typedef declaration. This

is messy, but something has to be done in all C compilers to

resolve this issue. Some parsing techniques can handle this kind

of ambiguity in an elegant manner, the correct parse being

chosen later when the types of names are all available.

An example of this problem is shown in the complete C

program:

This code illustrates the context sensitivity problem, and also

shows the importance of processing lists (in this case, a list of

declarations) in the right order. Here, in the function foo(), a has

to be declared, then x and finally b. Think carefully about how

lists are defined in grammars and how the corresponding actions

are executed.

Many programming languages have awkward context-

sensitive aspects, often requiring hacky solutions where the

syntax analyser sets a global flag that can be read by the lexical

analyser. In some cases, grammar modifications can improve the

situation. For example C grammars modified to be suitable for

yacc or bison are widely available on the internet. Using parsing

techniques specifically for context-sensitive grammars is not the

way to go. Expressing the context sensitivity in a grammar is

difficult and parsing efficiency will suffer too.

5.8 Conclusions and Further Reading
A good way of developing parser-writing skills is to look at the

formal grammars of a variety of languages and consider how

they can be implemented using both top-down and bottom-up

approaches. The grammar for ANSI C contained in [8] is a good

starting point, and searching for modifications to this grammar

to facilitate its implementation using bison and other tools

highlights some of the problems in the original grammar.

Many C compiler projects have been written up in detail such

as [9, 10]. These books give invaluable practical advice for the

construction of high-quality compilers. Software tools such as

lex, flex, yacc and bison are well-documented with examples on

the internet as well as in textbooks such as [6]. Many other tools

are available (search for compiler construction tools), specifically

JavaCC and CUP for those who program in Java. Pyparsing

provides parsing facilities for the Python programmer. There are

tools to generate top-down parsers as well as top-down parsers

and tools combining lexical analyser and syntax analyser

generation. These are all well-worth investigating.

If you have to write a compiler for a real language, it is vital

that you start off with a detailed knowledge of that language. If

that language is C, then [11] is an excellent starting point.

Exercises

5.1 The rules of DL specify that names have to be declared

before they can be used. This effectively disallows mutually

recursive functions. How would the design and

implementation of DL have to change to allow mutually

recursive functions? Implement these changes.

5.2 Use a standard grammar for arithmetic expressions and

write a desk calculator program based on a top-down

grammar. It should support integer values, add, subtract,

multiply, divide and parentheses and should evaluate

expressions typed in a line at a time. Compare this

implementation with the version produced in Sect. 5.2.2.2.

5.3 Extend the calculator from Sect. 5.2.2.2 to support unary

minus, floating point arithmetic, further scientific functions

(such as trigonometric functions), hexadecimal arithmetic,

etc.

5.4 It may be tempting to rewrite the example top-down

parsing code in Sect. 5.3 as:

Consider whether this would be acceptable.

5.5 At the moment, the syntax of in DL is simple

because of the lack of boolean operators such as and, or,

not and so on. Devise an appropriate syntax and

implement the syntax analysis.

5.6 This is a rather open-ended exercise, but useful if you

intend to use bison seriously. Sometimes things go wrong

with bison grammars and shift/reduce or reduce/reduce

errors are reported. Produce simple grammars exhibiting

both of these errors and ensure that you understand why

they occur and what is going on.

5.7 Look again at the C example in Sect. 5.7. Try to predict the

output when that program is run on your system. Then try

compiling and running it.

5.8 Try writing a parser using a top-down parser-generating

tool. Compare the experience with writing the same parser

using a bottom-up parser generating tool such as bison.

References
1. Johnson SC (1975) Yacc – Yet Another Compiler-Compiler. AT&T Bell

Laboratories, Murray Hill, New Jersey. Computing Science Technical report 32

2. Free software foundation. GNU bison (2014). https://​www.​gnu.​org/​software/​
bison/​. Accessed 31 Jan 2016

3. Technical university of Munich (2015). CUP – LALR parser generator for Java.
http://​www2.​cs.​tum.​edu/​projects/​cup/​. Accessed 31 Jan 2016

4. Tremblay J-P, Sorenson PG (1985) The theory and practice of compiler writing.
McGraw-Hill Book Company, New York

5. Mogensen TÆ (2011) Introduction to compiler design., Undergraduate topics in
computer science. Springer, Berlin

6. Levine J (2009) Flex & bison. O’Reilly Media, Sebastopol

7. Aho AV, Lam MS, Sethi R, Ullman JD (2007) Compilers – principles, techniques
and tools, 2nd edn. Pearson Education, Upper Saddle River

8.
Kernighan BW, Ritchie DM (1988) The C programming language, 2nd edn.

https://www.gnu.org/software/bison/
http://www2.cs.tum.edu/projects/cup/

Prentice Hall, Englewood Cliffs

9. Holub AI (1994) Compiler design in C, 2nd edn. Prentice Hall International, New
York

10. Fraser C, Hanson D (1995) A retargetable C compiler: design and
implementation. Addison-Wesley, Reading

11. van der Linden P (1994) Expert C programming: deep C secrets. Prentice Hall,
Englewood Cliffs

(1)

© Springer International Publishing AG 2017

Des Watson, A Practical Approach to Compiler Construction, Undergraduate

Topics in Computer Science, DOI 10.1007/978-3-319-52789-5_6

6. Semantic Analysis and
Intermediate Code

Des Watson1

Department of Informatics, Sussex University,
Brighton, East Sussex, UK

Des Watson

Email: desw@sussex.ac.uk

The semantic analysis phase of a compiler is the last phase

directly concerned with the analysis of the source program.

The syntax analyser has produced a syntax tree or some

equivalent data structure and the next step is to deal with

all those remaining analysis tasks that are difficult or

impossible to do in a conventional syntax analyser. These

tasks are principally concerned with context-sensitive

analysis.

Much of the work of the semantic analyser is based

around the management of names and types. It has to deal

with declarations and scopes, checking that each use of a

name corresponds to an appropriate declaration (assuming

that we are dealing with a programming language where

names have to be declared). This means that this phase has

to apply the language’s scope rules and it has to check that

each use of a name is allowed according to the type rules of

mailto:desw@sussex.ac.uk

the language. Whenever an operator is used to generate a

new value, the type rules for that operator have to be

checked to ensure that the operands have appropriate

types, the correct form of the operator has to be selected,

type transfer operations have to be inserted if necessary,

and so on. These are not processes specified by the

BNF/EBNF syntax of the language. Instead these rules are

usually specified by a narrative associated with the

programming language specification. These tasks are

usually more easily done once syntax analysis is complete.

The semantic analyser may also have to change the

program’s representation from a tree to some form of

intermediate language. There are good reasons for this

change of format. Flattening the tree to produce a simple,

linear intermediate form should not be difficult, but there

may be good reasons for generating an intermediate form of

greater complexity, supporting code optimisation. Designing

or choosing such an intermediate representation may be

more challenging.

The symbol table is the central data structure in this

phase. Data is inserted when symbols are declared and data

is read whenever symbols are used. Chapter 5 has already

shown how the symbol table can be managed largely during

the syntax analysis phase but it is also possible to delay at

least some of the symbol table operations until semantic

analysis is being carried out.

Exactly what has to be done in the semantic analysis

phase depends on the nature of the language being

compiled. It may be possible to do much of the type

checking, if not all, during syntax analysis. This may make

sense for simple languages with a limited set of type rules.

The DL language falls into this category. Furthermore, it may

even be possible to generate target code directly from the

abstract syntax tree. Obviously this leaves little for the

semantic analyser to do. But there are usually strong

reasons in anything but the simplest of compilers to have a

separate semantic analysis phase. Separating out the type

management makes good software engineering sense and

the choice of an appropriate intermediate form rather than a

tree simplifies the job of generating high-quality target

code.

6.1 Types and Type Checking
The concept of a data type is central to the design of

programming languages. A type system should be able to

help describe the structure and behaviour of valid programs.

Support for typing can improve the programmer’s

productivity, speed up debugging and offer opportunities for

target code optimisation. Strong typing can help avoid some

runtime errors. It is always preferable to move as much

error detection as possible from runtime to compile time,

finding the errors at the earliest stage possible. It is true

that strong typing can sometimes get in the way, but it is

now generally agreed that the benefits outweigh the

disadvantages.

Our task as compiler writers is to develop techniques for

the management of type data within the compiler, to make

sure that the operations being attempted in the source

program are compatible with the language’s type rules and

to make the most of the available type information in order

to generate correct and efficient target code.

6.1.1 Storing Type Information
Sometimes handling types is really simple. For example, DL

allows integer variables and integer arrays to be declared

and it also supports functions. So a name used in a DL

program refers to one of these three data types. This can be

represented in the symbol table by storing an integer tag

taking, for example, the values 1, 2 or 3. DL is designed so

that the syntax analyser can determine the correct type of a

name according to its syntactic context, and the data in the

symbol table is checked by the syntax analyser to ensure

that the use of a name is compatible with its definition. A

language rule stating that all variables have to be declared

before they are used (i.e. earlier in the source of the

program) makes the handling of variables and their type

information very much easier.

Adding further types may be managed simply by

increasing the number of distinct tag values, but as soon as

user-defined types
are introduced, a new approach is

needed. There is no standard way of representing this

information. The design of the data structures used will be

influenced by the range of type specifications available and

how they have to be used when checking for the correct use

of names in the program. For example, the typedef feature

in C allows arbitrarily complex types to be defined and

named. Here, the type information can be represented as an

abstract syntax tree of the type specifier linked to by the

type name’s entry in the symbol table.

Do not underestimate the potential complexity of

representing type information. Dealing with C structs and

unions, function declarations, enumerations, arrays and so

on requires a careful plan, and tying that plan to the formal

syntactic definition of the language is doubtless a good

approach.

6.1.2 Type Rules
Having dealt with type declarations, storing the type

information into data structures accessible via the symbol

table or perhaps directly from nodes in the abstract syntax

tree, this information can then be used to validate the use

of variables and other structures in the program being

compiled. Different programming languages have different

type models. The traditional model, found in many

imperative programming languages such as C, is to

implement static typing where a variable is declared with a

type and that variable keeps that type throughout its

existence. So, in C, if i is declared as int i; the compiler

can cause an integer-sized location in memory to be set

aside when the program runs, for the time during which i

exists. If an attempt is made to store a floating point value

into i, then the compiler can issue an error message. Note

that this checking is done during compilation during syntax

analysis, or more likely during semantic analysis.

This approach is contrasted with languages supporting

dynamic typing where the type of the data stored in a

variable can change during that variable’s existence. So

statement sequences of the form i=1 ... i=3.14 ...

i="Hello" are valid. Note that this does not imply that no

type checking is required — it is just that it is now unlikely

that all type checking can take place during compilation.

Instead, some or all of the type checking has to be delayed

until runtime and this implies that the implementation of the

language has to support the association of a type with each

variable at runtime so that checking code, generated by the

compiler or included in the interpreter, can ensure that the

type rules are being adhered to. Clearly there is a runtime

overhead in doing this. Languages such as Perl, MATLAB and

Python are in this category.

Clearly, hybrid approaches are possible and may be

necessary for some languages. To maintain strong typing,

not all checking is possible at compile time and so at least

some runtime checking is required too. However, in this

chapter we will be concentrating on compile-time static type

checking.

Most modern programming languages are designed to

support strong or fairly strong type checking. But some

programming languages are untyped and then it is up to the

programmer to keep track of the nature of the data stored

in each variable. In some languages type checking is

present but not very strict. For example, C’s union construct

provides a loophole for the type checking system. If the

language specifies type checking rules, then they have, of

course, to be supported by the implementation. Separating

this potentially complex type checking into a separate

phase of semantic analysis is sensible.

Knowing the type of a variable at compile time or at

runtime allows simplifications to be made to the way in

which the programmer manipulates data. If variables i and

j are declared with type int and a and b are declared with

type float (and note that we are not assuming that the

programming language is C in these examples), then it is

likely that we can write statements such as i = i + j and

a = a + b. In the first assignment, the addition operator is

assumed to take two integer operands and produce an

integer result. In the second assignment, the operands and

result are all real numbers. The addition operator is

performing two distinct tasks, implemented using different

instructions on the target machine. This has important

consequences for the compiler and it is during the semantic

analysis phase in statically typed languages that a type for

the operator can be selected. In dynamically typed

languages, the operator choice may well have to be delayed

until runtime.

The use of the single addition operator for both integer

and real addition is an example of operator overloading
. It

could get worse. Maybe the programming language allows

the addition operator to be used for further purposes such

as the concatenation of strings and forming the union of

sets. But as long as the type rules of the language are clear,

the implementation of this should be feasible. There will

also be rules forbidding certain type combinations. For

example, addition of a string and an integer may not be

allowed. Again, the semantic analysis phase is a good place

to generate error messages about such disallowed

operations. Another possibility is shown by the example a =

i + j. Here, the addition operator is an integer add, but the

assignment operator has to transform an integer value into

a real value and the semantic analyser has to tag the

assignment operator accordingly. Similarly in the case a = b

+ i, a type transfer has to be included to convert i into a

real value before using it as an argument to the real

addition operator. These examples obviously assume that

we are working with an appropriately flexible programming

language. Similar considerations apply to the use of

constant values in expressions. For example, the

assignment a = b + 2 may require a compile time (rather

than at runtime) conversion of the integer value 2 to the

real value 2.0, assuming that the language allows such

mixed-mode arithmetic expressions.

Associated with the typing of operators is the notion of

type equivalence
. When are two types considered to be the

same? A simple assignment (p = q) requires compatibility

between the types of p and q, and we can safely assume

that type equivalence implies compatibility. The language’s

rules for type equivalence are relevant to the coding of the

semantic analyser. We can distinguish between name

equivalence and structural equivalence
. Types are said to

have name equivalence if they have the same name. Types

have structural equivalence if they have the same structure.

For example, in Fig. 6.1 the two C structure types person1

and person2 are structurally equivalent but do not have

name equivalence.

Fig. 6.1 Structural equivalence

Fig. 6.2 Annotated tree

The correct algorithm for the programming language has

to be used to determine whether two types are equivalent.

6.1.2.1 Type Checking

An intuitive way of managing type checking in the semantic

analysis phase is to traverse the abstract syntax tree,

tagging nodes in the process. Using the variable types from

the section above, consider the source statement a = b +

i. The syntax analyser will represent this as a tree.

The semantic analyser will start at the root node

containing the assignment operator and perform a recursive

post-order traversal of the tree, tagging nodes as it goes.

The first node to be tagged contains a and this is tagged

with the type real, then the b node with real and then the i

node with int. The + node is then examined and a decision

has to be made whether this operator applied to a real and

an int is valid and if so, how it should be interpreted.

Assuming that conventional mixed-mode arithmetic is

permitted, we have to introduce a new node to convert the

int i to a real value and tag the + node with real (it is now

an addition of two real values). Finally, the top assignment

node is tagged with real. The annotated tree is shown in

Fig. 6.2.

This tree traversal/annotation process is driven by the

type rules of the language being compiled. Each node

requiring a type will be tagged with a type derived from the

types of its children according to the type rules. And tree

modifications will be made where necessary. Separating this

task from the syntax analyser makes the compiler’s code

much simpler and more maintainable.

6.1.2.2 Type Rules

Let us consider an example of another language where type

rules are needed. Suppose a programming language for the

manipulation of dates has been devised. This supports an

int data type to represent whole numbers of days and a

date data type to represent a calendar date. Literal integers

and dates are supported together with a set of operators to

manipulate these values. So, for example, a date variable

could be initialised to contain a certain date and the add

operator could be used to generate the date 100 days later.

To manipulate days and dates using the operators add and

subtract, the following combinations are possible.

These rules obviously depend on the details defined in the

language specification. The introduction of other operators

may well benefit the language, but the semantics of

operators such as multiply and divide may be more difficult

to envisage when manipulating dates.

6.2 Storage Management
Within syntax and semantic analysis, decisions have to be

made concerning the runtime representations of data and

language-supported data structures. Target machine-

dependent details are better left until the code generation

phase but the intermediate code to be generated by the

semantic analyser really needs some sort of data storage

model which can be mapped later to physical storage in the

target machine. Provision has to be made for the storage of

data in variables, function (or procedure or method)

parameters and results, temporary variables, static data

and so on according to the design of the programming

language being compiled.

The semantic analysis phase has no particular concern

with C’s dynamic storage allocation using system-defined

functions such as malloc. These are facilities supported by

the runtime library and space is usually allocated from a

memory area provided by the operating system. These

system calls are treated as conventional function calls. They

just refer to code defined in a system library which can be

linked to the code generated from the user program by the

compiler to form a complete executable program.

6.2.1 Access to Simple Variables
At some stage in the language implementation process,

variable names have to be mapped to physical storage

locations. There are clearly many ways in which this can be

done. Probably the most practical and likely approach is to

think of one or more runtime storage areas, each being a

contiguous area of memory, pointed to and hence identified

by one or more target machine registers. Then, as far as the

compiler is concerned, variables can be represented by

identifying a storage area and an offset in that storage area.

For particularly simple languages where all variable storage

requirements are known at compile time, a static allocation

scheme can be used. The semantic analysis phase can

associate a single offset value for each variable and these

offsets can be saved in the abstract syntax tree and hence

in the intermediate representation each time a variable is

used. Dealing with different memory-sized data

representations is not a problem because the type

information is stored in the symbol table and the tree and

this can be translated into a memory size indication which

can then be translated into a target machine offset during

code generation. Instead, it also may be possible to perform

the translation of text variable names into offsets in the

syntax analyser, allocating space as variables are declared.

6.2.2 Dealing with Scope
The simplistic view of variable declaration and use

presented in the last section is inadequate for any

reasonable programming language. At the very least the

concept of local variables is required.

Suppose our programming language allows declarations

of this form:

Here, variables i and j are globally declared, j (another,

different one) and k are locally declared in the first inner

block and l and m are locally declared in the second inner

block. The compiler has to map these six distinct variables

to six storage locations. A reasonable approach is to treat

the runtime storage area as a stack
. Let us assume that we

are using a storage model where each integer variable

requires a runtime location of size one unit (this can be

scaled appropriately later if necessary) and the compiler

maintains a stack pointer indicating how many stack

locations have already been allocated to variables. This is

initialised to zero. Global variable i is then assigned to the

location at offset 0 and j to offset 1. When the start of the

first inner block is encountered, the current value of the

stack pointer is saved (it has the value 2). Variable j (the

second one) is set to have offset 2 and k set to offset 3. At

the end of this inner block, the space used for variables j

and k can be relinquished by restoring the stack pointer to

its saved value from the start of the block (2). On entry to

the second inner block, the stack pointer is again saved and

variable l is set to have offset 2 and m set to offset 3. This

reusing of storage locations is possible because the

variables of the first inner block and the variables of the

second inner block cannot exist at the same time. The

handling of the scoping of variables is managed by the

symbol table for example, by structuring it as a stack as

well. The use of a stack-based symbol table was mentioned

in Sect. 5.​6.

There may, of course, be complications here, depending

on how the language is defined. The assumption that

variable space can be reused for the inner blocks fails if the

language demands that space is allocated statically. The

language implementer may also decide that the effort

required to manage this form of dynamic variable allocation

is not worth it for the potential space savings. For example,

it would be reasonable for a C compiler to allocate all the

space for variables in a function, even those declared in

inner blocks, in a single contiguous area.

6.2.3 Functions
The storage allocation problem is made more complicated

when functions are involved. When a function is invoked,

then memory space has to be available for the storage of

local variables declared in that function and also for the

storage of the function’s arguments. In particular, when

recursive function calls are permitted, static space

allocation will not be adequate since new space has to be

allocated for local variables on each recursive call and it is

in general impossible to predict in advance the actual

maximum depth of the recursion. A dynamic allocation

scheme is required. The usual way of implementing this is

via a stack. Details of this implementation approach are left

to Chap. 8 and only the basic principles are covered here to

highlight how both local and global variables can be

accessed.

Consider a simple program, written in a language

following the conventional scoping rules, with a main

program declaring integer variables i and j and a function r

with local variables a and b. The function r calls itself

recursively. Each time r is entered, space for a new set of

variables a and b has to be found and the addressing

environment changed so that each time the code in r

references a or b it is the “new” a or b being used. If storage

for these variables is managed in a piece of contiguous

memory used as a stack then the space allocation problem

is easily solved.

When the main program starts, the only variables

accessible (in scope) are i and j. The stack in which

variables are stored looks like this:

Here, sp is the stack pointer, pointing to the first variable

of the set of local variables in scope. At runtime, the stack

pointer will be held in a machine register and indexed

addressing will be used to access the variables stored on

the stack. The stack locations lower in the stack than the

location for i are used for miscellaneous linkage

information. They will be described in Chap. 8.

After the first call to r, space is set aside for variables a

and b declared in r. A new stack frame is created. In these

diagrams, a double line is used to separate stack frames.

Variables a and b can now be accessed by direct indexing

off the stack pointer (offsets 0 and 1 respectively). Then r

calls itself recursively and the stack now looks like this:

The crucial point to note here is that variables a and b

are still accessible via offsets 0 and 1 from the stack pointer

as before, but it is the new a and b that are being accessed.

So as far as the compiler is concerned, all it needs to do in

generating intermediate code to access local variables like a

and b is to record their stack offsets, and these should have

already been stored in the symbol table.

There is, however, a slight complication. Most languages

of this type (such as C) allow the global variables i and j to

be accessed in the code of r. How can access to these

variables be specified in the intermediate representation?

All that needs to be done is to explicitly record that these

are global variables 0 and 1 and code can ultimately be

generated to access i and j via some global variable

pointer (gp):

Further complications arise in languages such as Pascal

where function definitions can be nested
. For example, if

function f1 is defined in the main program and function f2

is defined within f1, the language’s scope rules allow code

in f2 to have access to f2’s local variables, f1’s local

variables and the global variables. Managing this requires

multiple pointers into the stack (gathered together in a data

structure called a display
) or a chain of pointers running

down the stack identifying the currently active stack frames.

This chain of pointers is called the static chain
.

6.2.4 Arrays and Other Structures
So far we have concentrated on the storage and handling of

simple variables. But most programming languages offer

data structuring facilities. The most commonly offered

structure is the array, and because arrays are central to the

coding of so many important computer applications,

efficient implementations of arrays are essential. Also, many

programming languages provide an aggregate data type.

This is a single structure containing multiple elements. A C

struct is an example. Unions are often available, allowing

data of different types to be stored in a single unit. Object-

oriented programming languages need implementation

techniques for the storage of objects made up of a

collection of elements or fields, together with code (as

methods) to manipulate this data.

There is an issue here concerned with target machine

independence. Ideally the semantic analysis phase should

be independent of the design of the target machine but if

this phase has the responsibility for designing the layout of

these data structures, complete target machine

independence may prove to be difficult.

When an array is declared, an entry is made in the

symbol table to store the array’s name. Each element in the

array is of the same type and this type has to be stored in

the symbol table too, together with a specification of the

array bounds. Also, if multi-dimensional arrays are

supported by the language, the number of dimensions has

to be stored. Some languages allow the subscript ranges to

be specified while other languages assume that each

subscript starts at 0 or 1 and a maximum range is recorded.

Some languages permit non-integer types to act as

subscripts. All this information has to be stored in the

symbol table too.

What should happen when the semantic analyser

encounters a statement containing an array reference?

Clearly, the type checking process will make use of the

information stored in the symbol table to partially validate

the array reference but more may be required. An array

access has to be translated during the compilation process

into a form appropriate for target machine implementation,

requiring the address of the array element being referenced.

For example, in C, if an array is declared as int x[5] and a

reference is made to element x[i], then at runtime (unless

the compiler can predict the actual value of i) the

computation

address of the first element of x + i * size of a C int

has to be performed to find the address of the indexed

element. Assuming that the abstract syntax tree makes use

of nodes directly representing array access, the semantic

analyser could expand these nodes to represent this full

address calculation process. This expansion may seem

unnecessary, but there are good reasons for carrying it out

before the intermediate representation of the program is

passed on to the next phase of compilation. This is because

expressing array access in this low level form provides more

machine-independent optimisation opportunities.

6.2.4.1 Multi-dimensional Arrays

When multi-dimensional arrays are used, the address

calculations become a little more complicated. For example,

if an array is declared in C as int y[10][5] then 50 int

locations are set aside and these locations can be

individually accessed by references of the form y[i][j].

Here, i should be in the range 0 to 9 and j in the range 0 to

4. The address computation for this element then becomes

address of the first element of y + (i * 5 + j) * size of a

C int

with the 5 in the computation coming from the second

bound of the array. Similar computations can be done for

arrays of three or more dimensions. Note the significant

computational cost for accessing array elements,

particularly in multi-dimensional arrays. As will be seen,

optimisations in various circumstances may be able to

reduce this cost. Also note that there are choices to be

made concerning the order in which array elements are

mapped to linear storage. Here, for two-dimensional arrays,

the C rules are followed so that the second subscript varies

most rapidly. This is not the same in all programming

languages. Some languages specify that the mapping is

done so that the first subscript varies most rapidly and

some others say nothing and the storage order is

implementation-dependent.

6.2.4.2 Array Bound Checking

Should array bound checking be implemented? Should code

be generated so that each time an array is accessed, the

subscript values are checked to ensure that they lie in the

permitted ranges? Some array bound checking may be done

at compile time if static analysis (see Chap. 7) can

determine the actual value of an index. But runtime array

bound checking comes with a computational overhead. Also

it is possible but unusual for the rules of the language to

make array bound checking inappropriate. The addition of

this checking code can be done by modifying the tree,

during the generation of the intermediate representation or

later during target code generation.

6.2.4.3 Structures and Unions

The ability to group together data items into a single named

structure is common in today’s programming languages

using a struct, a record, a part of an object, and so on. The

structure can be referenced as a whole while retaining

access to the individual fields. Fortunately, implementation

poses no real difficulties with the structure information, field

names and types and so on all being placed in the symbol

table. For example, the node type in the abstract syntax

tree in Chap. 5 was defined as

where a node contains three integers and three pointers.

The structure can be seen as a block of contiguous memory

locations, large enough to store all the fields. All the field

names and their offsets in the storage associated with the

structure are stored in the symbol table. The sizes of the

fields are either assumed at this stage or they can be

decided upon later in the code generator. Target machine

constraints may influence the order in which the fields are

stored. For example, consider a structure defined as

containing two characters, an integer and then two more

characters, to be implemented on a machine where

characters occupy one byte each, an integer requires four

bytes, and integers have to be stored on word boundaries in

memory. In this case, it may make sense to pack the four

characters together and follow them with the integer rather

than retaining the original ordering, where two bytes of

padding would be required for each instance of the

structure.

Unions are handled in a similar way. For example

causes all the names to be stored in the symbol table,

the size of the union structure being set to the size of the

largest member of the union, and it can be regarded as a

struct with all the fields having a zero offset.

6.3 Syntax-Directed Translation
We have already seen how a formal specification of a

context-free grammar can be used to produce a syntax

analyser. The natural way of progressing from the

recognition of syntactic constructs to code for a complete

syntax analyser is to make use of the ideas of syntax-

directed translation, where grammar productions are

associated with program fragments or some more formal

rules and these program fragments perform the translation

of each syntactic construct to some new program

representation. This new program representation can of

course be an abstract syntax tree and in this case the

translation process has already been discussed. But it may

be possible to go further and cause the actions associated

with the productions to do more work, generating

intermediate code, target machine code or even interpreting

the code directly. The translation of the source language is

being driven by the syntax analysis process.

6.3.1 Attribute Grammars
To what extent can this translation process be formalised?

An attribute grammar can extend a context-free grammar

by allowing the manipulation of attributes. Each symbol in

the grammar is associated with a set of attributes and each

attribute has a value (such as an integer or a type

specification). Attributes are computed at each node in the

parse tree or, equivalently, at each production rule used in a

reduction. An attribute is said to be synthesised if its value

is computed from data in the node itself and from data from

that node’s children. Inherited attributes use data from or

via the node’s parents as well as from the node itself.

This approach allows context-sensitive analysis to be

formalised. For example a type attribute can be associated

with symbols and type rules can be checked at each node.

The use of attributes can be taken further. Consider a

language (defining expressions and so on) for a numerical

calculator. Here, an attribute for each grammar symbol

could be a numerical value and the attribute grammar rules

actually perform the computation specified. So, for example,

the rule for an <expression> +<term> node could

synthesise the attribute for the node by adding the

attributes from its two children.

This approach should look familiar. With tools such as

bison, the actions specified by each grammar rule

correspond closely to the management and calculation of

attribute values. For example:

gives a clear example of the use of synthesised

attributes, with the attribute associated with expression

and term being the numerical values of the expression and

term.

Software tools are available to at least partially generate

parsers or translators via the use of attribute grammars,

thus helping to automate the handling of semantic

information. There is a parallel here with functional

programming, with the returning of attribute values via

children being similar to a function call. This approach is

good for simpler applications but implementation

practicalities, particularly concerned with the handling of

inherited attributes, makes it difficult to use for more

complex grammars. Tools such as bison allow ad hoc

solutions to be developed by associating an action

expressed as code with each production and the code of the

action can perform the required checking and manipulation

of the attributes.

Do attribute grammars provide us with a general-purpose

tool for the construction of practical compilers? In particular,

can they be used to manage the process of target code

generation by merging it into the parsing process? The

answer is probably no. The key problem is that processing a

parse tree node effectively is not just a local operation

because information is required from children, from

ancestors as well as from the node itself, and managing all

this non-local information via attribute grammars is not

easy. Translating each node in isolation is appropriate for

simple cases only. Instead, avoiding complexity by

developing the compiler as a series of communicating

phases still seems very attractive. The tree generated by

the syntax analyser can then be annotated by the semantic

analyser and intermediate code generated, and there is no

reason why a formalisation based on the attribute

grammars cannot be used here. A separate process can

optimise the intermediate code and the independent code

generation process can then produce target code.

6.4 Intermediate Code
The abstract syntax tree generated by the syntax analyser

and annotated by the semantic analyser provides a mid-way

representation of a program in the process of compilation.

But is this a good data structure from which to generate

target machine code? Is it a good intermediate

representation?

The intermediate representation (IR) forms an interface

between specific compiler phases, typically between the

front-end and the back-end of the compiler. The last phase

of the front-end is usually the semantic analyser and the

back-end is responsible for code generation. The compiler

could make use of the same IR between multiple back-end

code optimisation phases. And there is no reason why a

compiler cannot be designed to use more than one IR.

The IR should be designed to facilitate the interface

between the front-end and the back-end. It should not be

regarded as an interface with which the user of the compiler

is particularly concerned, but ensuring that there is a way

for the compiler writer or interested user to inspect a

human-readable representation of the IR is important. The

design should be such that the generation of the IR in the

front-end should not be overly difficult and the IR should

support effective code generation and optimisation. It may

be helpful to think of the IR as the machine code for a high-

level and structured target machine. The IR should be

sufficiently expressive so that all the constructs of the

source language can be encoded cleanly into IR statements

or structures. Assuming that we are thinking about a

traditional compiler generating code for a target machine,

the IR should be easily translatable into target machine

code. Another important characteristic of an IR is that it

should be able to support aggressive code optimisation,

thus permitting the generation of high-quality code. In many

modern compilers this is the IR’s key design aim.

The IR can play an important part in adapting the

compiler to compile a different source language or generate

code for a different target machine. Here, new design aims

are appearing for the IR and issues of source language and

target machine independence become significant.

Furthermore, the IR may be easily interpretable, providing a

rapid route to programming language implementation.

These issues of compiler implementation and porting are

discussed in Chap. 9.

Is the IR file or data structure generated by the front-end

completely self-contained? Does the back-end of the

compiler require access to other data structures such as the

symbol table? This is not a critical issue, but there is some

attraction in making the IR self-contained in order to simplify

the interface to the compiler’s back-end. It may be

necessary for the front-end to export all the source program

symbol information so that it can be held in the executable

program generated by the back-end, making it possible for

a runtime symbolic debugger to relate storage locations to

source program variable names.

This book concentrates on the use of a linear IR but some

graph-based IRs are also described. There are advantages

for the use of a linear IR. For example, it should be easy to

generate target code (not necessarily optimised) from linear

code by translating statement by statement. There are

many forms of linear IR in use today and there is no

international standardisation of IRs as there often is for

programming languages. But graph-based IRs are popular

too, again with a variety of designs. Some of these IR

designs are allied to particular programming languages or

language types, some designs are good for particular types

of optimisations and a few designs try to be general

purpose, appropriate for many source languages and target

machines. In this section various IR types are outlined. For

DL’s implementation, a simple linear IR will be used and this

IR can illustrate a range of optimisations.

6.4.1 Linear IRs
A linear IR can be regarded as the machine code for a

virtual machine. This virtual machine should be regular and

structurally simple, yet have enough expressive power to

cope with all aspects of the language being compiled. A

wide range of such IRs are used today, but it is possible to

adopt existing high-level languages as the IR. For example,

C has been used in many compilers as an IR. The generation

of C from the syntax tree should be easy, and this C can be

compiled by an existing C compiler to produce an

executable program, without having to write a conventional

code generator at all.

6.4.1.1 Traditional IRs

Generating the IR from the abstract syntax tree using just a

simple prefix or postfix traversal will yield a form of linear

IR. Such IRs were sometimes used in the early days of

compilers, particularly for stack-based target hardware.

These representations have advantages of simplicity but

they are not so popular now because they do not work quite

so well with the powerful optimisation algorithms used

in today’s compilers. Although stack-based IRs, such as the

Java Virtual Machine
, are used, being interpreted or

translated into a target machine code, non-stack based

linear IRs based on instructions containing an operator,

up to two arguments and a result have become more

popular. These instructions can be structured in a variety of

ways [1]. A natural way of representing these instructions is

by using a three-address code
, the three addresses being

used for the two operands and the result. This results in a

readable IR and one that can be generated from the tree

fairly easily. For example, the statement x = y*3 + z;

could be translated as:

 is a compiler-generated temporary variable. The

instructions are written here using symbolic references to

variables (it is assumed that a symbol table is available if

necessary) and this makes the code much more readable.

Some instructions (such as or a simple copy) only

require one operand and so the second operand is just

omitted. A range of operators is required to match the

functionality of the source language (and hence the nodes

in the abstract syntax tree) including arithmetic operators,

conditional and unconditional jumps, array access and a

function call mechanism, including arguments. There are

similarities in style between three-address code instructions

and the instructions of a RISC processor and those

similarities might help in the code generation process. In

Sect. 6.5 a complete three-address code IR suitable for DL is

defined.

6.4.1.2 Static Single Assignment Form

Three-address code, as described above, explicitly defines

the control flow of the program. Paths through the program

follow the statement order and are changed by jump

instructions and labels. But there are many potential

optimisations that are based on analysis of data values. For

example, is it possible to predict using static analysis (i.e.

without executing the program) the values of particular

variables after the execution of a piece of code? This type of

analysis can be facilitated by adding data flow information

to the IR.

Static single assignment (SSA) form provides this

information [2]. SSA is not an IR. It just defines some

structuring rules that can be applied to an IR such as three-

address code so that the data flow information is made

explicit. In SSA form, each variable can only be assigned to

once. So if a piece of code makes an assignment to a

particular variable and then that variable is assigned to

again, the second assignment must be modified to use a

new variable. For example, the code

is transformed to

In the original code, x is assigned to twice and hence the

introduction of and . This representation makes it clear

that, for example, the use of in line 4 corresponds to its

definition in line 3. That use on line 4 has nothing to do with

the definition on line 1.

But this protocol causes a problem. Consider the code

which can be translated into a three-address code

version:

if

goto

But when translated into SSA form

if

goto

the value to be assigned to is going to be either or

 and it is only at runtime when the decision can be made.

To resolve this issue, SSA allows us to write

if

goto

where the -function is a function to indicate the meeting

of control flow paths and the result is chosen according to

which variable definition (the most dominating) was made in

the control flow path most recently executed. At first sight

implementing the -function appears difficult. But it can be

implemented during code generation by ensuring that all

variable parameters of the -function share the same

register or storage location or by ensuring that appropriate

register copies are made.

All this additional complexity is justified by the fact that

the data dependence information embedded in SSA is

necessary for the implementation of a wide range of

optimisations. For example, constant propagation is made

very easy. If, say, variable is found to have the value 3,

then replacing all uses of by 3 and deleting the definition

of is easily done.

The generation of SSA is not trivial but good algorithms

are now available. For further information see [2–4].

6.4.2 Graph-Based IRs
Although it is often convenient to have a human-readable

linear IR, using more powerful data structures may offer

advantages. The syntax tree data structure produced by the

syntax analyser can be regarded as an IR in itself.

6.4.2.1 Trees and Directed Acyclic

Graphs

The abstract syntax tree is easy to construct and can be

used directly for the generation of target code. A tree

traversal based on post-order can be used for code

generation, with code being generated for the children of a

node before dealing with the operation specified in the

node. This appears to be a very attractive approach to code

generation, but there is a clear disadvantage in that it is

extremely difficult to generate high-quality code from this

representation. As soon as efforts are made to optimise the

generated code, the simple tree traversal has to be

abandoned. The code generation process ceases to be local

and when generating code for a particular node in the tree,

neighbours of the node (children, parents and beyond) have

to be examined too.

A good example of this issue is when code-generating

expressions with common subexpressions
. For example,

consider the expression . The corresponding

tree is shown in Fig. 6.3.

Fig. 6.3 Tree for

There is a common subexpression here () and this

can be detected by traversing the tree looking for common

sub-trees. The links in the tree can easily be changed to

reflect the fact that only one instance of this subexpression

is necessary. This is shown in Fig. 6.4.

Fig. 6.4 Common subexpression

Note that this structure is no longer a tree because the

subtrees of the root node are no longer disjoint. It has

become a directed acyclic graph (DAG). This means that

traditional tree traversal algorithms will no longer be

appropriate and more complex algorithms are required to

traverse and extract data from the graph.

Finding common subexpressions is a significant

optimisation but using a DAG does not automatically solve

the problem. Common subexpressions need to be detected

even when they are not within the same statement or

expression. Some sort of control flow analysis is needed too,

ensuring that if common subexpressions are found there are

no intervening operations that could change the computed

value of the subexpression. This issue will be examined in

detail when code optimisation is covered in Chap. 7.

6.4.2.2 Control Flow Graphs

The control flow graph (CFG) [5] is a directed graph made

up of nodes and edges with the edges representing possible

paths of execution. Each node in the graph represents either

a single instruction or a basic block
. A basic block is an

instruction sequence with a single entry point at the first

instruction and an exit point at the last instruction. Any

jump (conditional or unconditional) instruction must be the

last instruction in a block. If a block ends with a conditional

jump, there are two edges coming out of the node

representing that block.

For example, consider the code fragment:

This code can be translated into three-address code:

if

goto

goto

These instructions can be grouped into basic blocks and

control flow between the basic blocks added, as shown in

Fig. 6.5.

Fig. 6.5 Basic blocks with control flow

This is the control flow graph and it is used as an IR in

many compilers. It is a good basis for code optimisation and

it is not difficult to construct. There is a need for some

additional structure to represent functions and the usual

approach is to have a CFG for each function with a separate

call graph to show the possible paths for function calls.

In this example, the code in the basic blocks has been

shown in three-address code, but other representations are

possible. For example, the three-address code can be

converted into SSA form and then the CFG can be

constructed. This approach offers further opportunities for

optimisation.

6.4.2.3 Data Dependence Graphs

Graphs can also be used to show how data flows in a

program. For example, in the code:

there is a data dependence from the first statement to

the third. The variable x is set in the first statement and

used in the third. The data dependence graph reflects this

data flow. The nodes in this graph represent operations and

the edges connects definitions with uses.

The data dependence graph for this trivial example

would contain three nodes, one for each assignment, with

an edge from node 1 to node 3. This implies that the

operation in node 1 has to be completed before performing

the operation in node 3. Nothing is said about when the

operation in node 2 should be performed. So this

representation is in general incomplete in that the

program’s control flow is not uniquely specified by the data

dependence graph. The data dependence graph only

imposes a partial ordering on the statements or instructions.

More is needed for a complete IR. But this structure can be

useful when performing various specific optimising

transforms such as parallelism detection and instruction

scheduling. Whether this data dependence information is

included in the IR or whether it is computed when needed

later in the compilation process is largely a matter of

opinion. Furthermore, data dependence information is

implicitly encoded in SSA-style representations and so if an

SSA-based IR is used, adding extra data dependence

structures may not be quite so useful.

To allow the IR to provide more comprehensive

information, the program dependence graph was

proposed [6]. This structure contains both control and data

flow information, with nodes representing statements,

predicate expressions or regions (nodes with the same

control dependence) and edges representing control or data

dependencies. Many further IRs have been developed in

recent years, some being designed for general-purpose

optimisation and others being focused on specific types of

optimisation [7].

6.5 Practical Considerations
Syntax analysers for DL generating abstract syntax trees

were developed in Chap. 5. Transforming an abstract syntax

tree to a linear sequence of intermediate code instructions

is based on a post-order traversal of the tree, outputting

code as nodes are visited. However, this is not a wholly

routine task and this section examines some of the issues

involved in generating a three-address code intermediate

representation.

6.5.1 A Three-Address Code IR
The IR chosen for this example implementation of DL is

based on the three-address code described in [1]. The

instructions manipulate data held in virtual registers and in

the virtual machine defined by this IR, there is no limit on

the number of registers available. These registers are called

r0, r1, r2, Variables declared in the DL programs are

either global variables (declared at the top level) or local

variables (defined within a function). The global variables

are given the names vg0, vg1, vg2, ... and these are

considered to be mapped on an appropriately sized block of

contiguous storage so that the address of register vgn is the

starting address of the block of storage + n. This allows

arrays to be implemented easily. Similarly, the local

variables are given the names vl0, vl1, vl2, ... and they are

placed in a similar contiguous storage area.

The instructions can also use constant values. These are

expressed as conventional decimal integers. None of the

instructions can use more than three addresses (it being a

three-address code).

The instructions used are:

Assignments with two arguments and a destination (a

b op c), with a single argument for a unary operator and

a destination (a op b) and simple copy assignments (a

 b).

Unconditional jumps (goto label).

Conditional jumps (if a relop b goto label).

Array access (a x[i] and x[i] a).

Function call (call function, and arguments are passed

by preceding the call with an appropriate number of

param instructions of the form param arg).

Function return (return).

Input and output (read a and write a).

A three-address code for a more comprehensive source

language would need further instructions including a set for

pointer/reference management. The instructions available

must cover all the operations required for all the data types

supported by the source language.

The very simple example shown in Fig. 6.6 illustrates the

style of this IR. The source program is on the left and the IR

generated for the four assignment operations is shown on

the right.

Fig. 6.6 Translation of DL to IR

The IR that this front-end generates uses the convention

that the program variables are called vgn or vln where n is

an integer value. Here, a is in vg0, b in vg1, c in vg2 and d in

vg3. The registers named rn are used for temporary values.

It is easy to see the correspondence between the two pieces

of code. Some of the characteristics of the generated code

are examined in the next section.

6.5.2 Translation to the IR
There are some important design decisions to be made

before tackling the coding of a translator from a tree-based

representation to a three-address code. It becomes clear

very quickly that this phase of compilation is different from

earlier phases because there is no predefined “correct”

output. For example, looking at the IR in Fig. 6.6, there are

infinitely many semantically correct translations that could

be produced from the abstract syntax tree. These different

translations will have different costs in terms of numbers of

IR instructions. We can make some overall design proposals

and then examine the consequences.

There is no pressing need to optimise in this phase. It is

better to keep the translation simple even though that

may mean the generation of verbose code. But it does

no harm to implement some simple optimisations.

The generated code can be profligate with its use of

temporary variables. Whenever a new temporary

variable is needed, it is perfectly acceptable to use a

new variable name rather than keeping track of variable

names already used and determining when they are no

longer required. The code generator can assign these

temporary variables to target machine registers or main

storage locations, as appropriate.

It is not wrong to deal with each tree node

independently. It is not essential to examine the

parent/child context of each node to generate better

code. Optimisations based on context can be dealt with

later. This reduces the complexity of this phase

enormously.

There is nothing wrong in making the IR readable,

making use of symbolic names for labels and functions

rather than absolute or relative addresses, aiming for an

assembler-like language rather than a machine code-like

language. However, one should ideally avoid references

to the symbol table so that access to the symbol table

does not need to be carried forward into the compiler’s

back-end.

It is sensible to try to maintain target machine

independence. In the case of this compiler for DL, this is

probably not too much of a problem because there is

essentially only one data type being used.

It is clear that generating IR directly from the tree will

result in code that is not optimal. For example, the code

produced in the example in Fig. 6.6 contains some

redundancy both in terms of instructions as well as in terms

of registers used. Generating highly optimised code directly

from a tree is difficult. It is much better to generate code

that can be optimised later. These optimisation algorithms

are described in Chap. 7. In this example, code is being

generated for each statement independently and when

statements are juxtaposed, the code starts looking rather

poor.

The formatting of the IR is of some minor significance.

Ideally, to save writing a parser for the IR as the front-end of

the next phase of compilation, it makes sense to generate

the IR in a low-level binary format which can be read

directly by the optimiser or target code generator. But

producing a human-readable version as well may be very

helpful, particularly when debugging the compiler.

The next step is to look at some of the details of the code

to translate from tree nodes to the IR. A recursive tree-

traversal function cg is defined, having an overall structure

very similar to that of printtree, the tree printing function.

It is based on a large switch statement, each case dealing

with a particular node type. For many of the abstract syntax

tree node types the actions are straightforward, but there

are some constructs needing additional explanation.

6.5.2.1 The IR Generating Function cg

Consider the problem of generating code for an arbitrary

node (Fig. 6.7) containing an operator and left and right

subtrees providing two operands for the operator.

Fig. 6.7 A generalised tree node

The code generator function is called with an argument

(p) pointing to the operator node. The function calls itself

recursively with the left pointer as argument and then with

the right pointer as argument (or vice versa as the subtrees

are independent), and then code can be generated for the

operator, referring to registers used to hold the results from

the left and right subtrees. Specifying this a little more

carefully, cg should return either

a temporary register (e.g. r5), or

a register associated with a variable (e.g. vg5 or vl2), or

a constant value (e.g. 5), or

nothing (because some constructs return no value at

all).

Therefore cg should return a struct a3token defined as:

Examples of code to handle particular DL constructs

using this approach are presented below.

There are of course other ways in which the code

generator can be structured but this general approach is

simple and effective. It also generates fairly good

intermediate code. Although it has already been said that

there is no need to optimise at this stage, compiler writers

inevitably like to show off their optimisation skills, even in

this phase!

Considering the code for cg itself, a switch statement

can be used with a case for each node type. This is very

similar to the code used for outputting the tree.

6.5.2.2 Variables

Before looking at the details of the translation of specific

statements, the handling of variables should be examined.

The use of a stack for variable storage at runtime, as

described in Sect. 6.2.3, is appropriate for DL. The global

variables
are those declared at the top level and they are all

stored in the lowest frame on the stack. At runtime, a

pointer (called gp — the global pointer) is set up to point to

the start of this stack frame. The IR variables vg0, vg1, vg2,

... are stored here so that at runtime, the address of, for

example, vg23 is found by adding 23 to the contents of

register gp.

When functions are involved, the situation becomes a

little more complex. The code within a function can access

both the local variables
declared within that function,

together with the argument variables
. The code can also

access all the global variables already defined so far in the

program. Accessing the global variables is as already

described via the gp register. Local variables are stored

further up the stack. These variables are called vl0, vl1,

vl2, ... and they are accessed via offsets 0, 1, 2, ... from the

contents of register sp. Because sp always points to the

base of the current stack frame this plan works even if the

function calls itself recursively.

This is why there are two distinct forms of variable in the

IR — the global and the local variables. The vg
n variables

are accessed via gp and the vl
n variables are accessed via

sp.

6.5.2.3 Expressions

The handling of arithmetic expressions
provides a good

example of how three-address code can be generated. A

tree of the form shown in Fig. 6.7 can be used to represent

an expression with the node containing an arithmetic

operator. The general approach to code generation

presented in the last section can then be adapted to

generate code for arithmetic expressions. Given the

expression 1 * 2 + 3 + 4 this algorithm will produce three-

address code of the form:

leaving the result in r1.

The code in cg generating this output for nodes

containing an operator is as follows:

The genreg() function returns the identity (as an

a3token) of the next unused temporary register. Code is

generated for the left and right subtrees of the node and the

arithmetic instruction for the node is output using the outop

function, outputting +, -, * or / according to its argument.

The opreg function outputs an argument for the machine

instruction, either a temporary register, a register storing a

variable or an integer constant. Returning t at the end of

the code indicates to the caller that the result has been

placed in register t. Further optimisations are of course

possible. For example, if both subtrees refer to constant

values, the computation specified by the node can be done

immediately and the computed value returned as a

constant. However, optimisations like this may be better

performed later.

This code is simple and it works well. It produces fairly

high-quality code because the cg function returns a result

that can be placed directly into an instruction being

generated for the current node. An alternative approach is

for cg to return its results in temporary registers so, for

example, the code for 1 + 2 would take the form

But it makes sense to code cg to make the generated

code more compact. The cg function just has to return a

little more information to its caller.

The handling of boolean expressions
is not an issue for

DL, but clearly similar techniques can be used to those for

arithmetic expressions. As ever, the language definition is

the guide for the evaluation rules. Consider the simple

example of the evaluation of the expression a & b. Here the

 operator is the boolean and. Evaluating this expression

can be done by evaluating a, evaluating b and then

computing a & b by code generating the appropriate target

machine instruction. There is a potential alternative.

Suppose a is evaluated. If it is found to be false, then b

need not be evaluated because the value of the entire

expression must be false. This short-circuited evaluation

looks like a good optimisation. But a problem arises if the

evaluation of b has side effects. The language rules have to

be consulted to ensure that the correct form of evaluation is

being used.

6.5.2.4 Conditional Statements

DL’s conditional statements
(if and while) are both based

on a test using a <bexpression>, a relational operator

separating two expressions. Consider first the if statement.

There are two possible forms since the else-part is optional

and they are defined in BNF as follows:

The tree node generated by the parser contains the tag

N_IF, a pointer to the condition (<bexpression>), a pointer

to the then-block and a pointer to the else-block (NULL if not

present). An obvious way of generating code for this

construct is to first generate code for the <bexpression>

with the assumption that this code leaves a value in a

register indicating whether the value of the condition

evaluated as true or false (say, 1 or 0 respectively). Then a

conditional jump can be compiled to jump to the else-block

or the end of the statement if the condition evaluated as

false. The then-block is then code generated, followed by a

jump, if necessary, to the end of the code for the else-block.

This will work but relies on a messy double comparison,

once in the code generated for <bexpression> and once in

the code checking the condition.

A better approach is for the code generation of the if

statement to deal also with the code generation of the

<bexpression>. This is shown in the code example below

where only one test is needed in each if statement.

Consider then the code generation of a statement

starting if (a>0) with a then-block but no else-block. The

code should have the form:

and if there is an else-block the code should have the

form:

Note that the sense of the relational operator has to be

inverted in this code so that, for example the operator > in

the source code is translated to the operator <= in the IR.

This is the role of the function invcondition in the code

below. It examines the relational operator in the node

passed as an argument and prints the inverse operator.

Generating intermediate code of this form is not difficult.

For example:

An example of the IR generated by this code from the DL

source code

if (a+b> a*b) c = 1 else c = 2 is:

DL’s while statement is treated in a similar manner. For

example, the IR generated from a DL statement starting

while (a>0) would have the form

The code to generate this IR takes the form:

and the IR this generates from the DL source statement

while (i<=10) i = i + 1 is:

Although not relevant to DL, the implementation of the

switch construct should be mentioned. There are many

ways in which this can be tackled. A simple approach is to

regard the switch statement as an if ... then ... else if ...

construct. For switch statements with many cases, this may

not result in high performance code, but the logic is simple.

The range and number of case values are important in

deciding on a more efficient implementation strategy. It may

be that a jump table can be used, or even some sort of

binary search algorithm.

6.5.2.5 Functions

The parser constructs a linked list of pointers to all the

functions declared in the DL program. This is a distinct

structure, independent of the abstract syntax tree

generated for the main program. There is a node for each

function in this separate abstract syntax tree and in this

node is an identification of the symbol table entry for the

function together with a pointer to the tree for the block

defining the code for the function. The number of arguments

is placed in the symbol table so that when the function is

called, the number of arguments provided in the call can be

compared with the number of arguments in the definition.

They should of course be equal.

Generating code for each function is not difficult. The

code needs to start with an identification of the function

name, and this is followed by the code for the function itself,

generated in the normal way by the cg function. However

there are two further issues, one for the beginning of the

function and one for the end.

Associated with every function and the main program too

is the size of its stack frame. This is the total size of all the

variables declared within the function (or the main program

— the global variables). If the function or the main program

calls another function, knowledge of this size value is

essential because the stack pointer (sp) has to be

incremented by this value to point to the space available for

the local variables of the function being called. This size

value is normally stored in the symbol table, but it would be

convenient to have the value available at the start of the IR

code for the function. In the case of the DL compiler, the

code for the function is preceded by a line starting with a

colon character followed by the name of the function being

defined, followed by the size of the local variables for that

function enclosed in parentheses. Examples of this can be

seen in Sect. 6.5.3.

The other issue is concerned with the return of results to

the caller of the function. The syntax of DL shows the

return<expression> construct and this is translated into a

return IR instruction. But how can a value be returned to

the caller? A convenient way of managing this is to reserve

a temporary register for the entire compilation and this

register is always assumed to contain the result from the

last function call. For example, the function return1 and its

corresponding translation is:

Here it can be seen that the preallocated register for

return values is r0. The caller of return1 can then save the

value of r0 if necessary.

But what happens with a DL function that finishes

without having executed a return instruction? Is this an

error? The specification of DL should of course say what

should happen (but it doesn’t!). So we can take an easy way

out at this stage by assuming that all functions should end

with the code

so that a value of zero is returned if control falls through

the end of a function without having executed an explicit

return instruction.

Function call is easily managed. The code to generate the

arguments, if any, for the call is generated, with the

arguments going into param instructions. The call is made, a

new temporary register is allocated and the value in the

preallocated result register is placed in this new register.

The code in cg to do this is:

In this code, the p1 field of the structure pointed to by p

is the list of arguments to the function and the astdata1

field is the index of the symbol table entry defining this

function. To help show how this code works, consider this

example and the corresponding IR code:

6.5.3 An Example
Here is some DL code showing a few of the features that

have been discussed in this chapter. It shows how functions

are represented and called, how results are returned from

functions (in r0) and how the size of the stack required for

local data storage in each function and in the main program

is stated in brackets after the function name. Note that the

main program is given the name !MAIN! — an arbitrary

name that is distinct from any DL function (a function name

cannot include exclamation marks).

The IR generated by the compiler is:

Another example appears in the appendix.

6.6 Conclusions and Further Reading
DL has extremely limited support for making use of type

information. It is certainly worth looking at how type

information can be stored and managed in compilers for

more powerful languages
. For example [8, 9] show code for

C compilers and therefore cover the issues of user-defined

types and type equivalence. There is also a large published

literature on type systems and a relevant example is [10].

Type checking is covered well in [11]. It is instructive to find

out how typing is used in a variety of programming

languages.

A great deal has also been written in the field of

comparative programming languages and reading in this

area gives a good insight into the huge range of

programming language features needing implementation.

For example, Java is an important milestone in the

development of general purpose (and object-oriented)

languages and in the context of this chapter, the Java Virtual

Machine (JVM) [12] has particular significance.

This book concentrates on traditional imperative

programming languages and the worlds of object-oriented,

logic programming, functional and other languages are

largely ignored. Many of the techniques described in this

book have general applicability, but more specialised

approaches are required to deal with specific language

features. There is a good introduction in [13].

The design of intermediate representations for

imperative languages is covered in [7]. Intermediate

representations for functional languages are discussed

in [14, 15]. The LLVM compiler infrastructure project is

documented in detail at http://​llvm.​org and there is much

there on the design of intermediate languages.

The syntax-directed translation approach to the

generation of code is covered in [1] and much more detail

about attribute grammars is in [3]. Most programming

languages need to implement sophisticated storage

management techniques not just to provide storage space

for variables but to provide flexible storage for objects,

dynamic heap-based data structures and so on. Storage

management using garbage collection, reference counting,

etc. may well be necessary. A good summary appears in [1]

and these issues are dealt with more generally in many of

the data structures and algorithms textbooks.

DL provides only a very simple form of boolean

expression support. When evaluating more complex boolean

http://llvm.org/

expressions, it may be possible to implement some

significant optimisations. These techniques of short-circuit

evaluation are covered in [3].

The generation of high-quality code for the switch

statement has been studied, for example in [16, 17].

Exercises

6.1. The date manipulation language introduced in

Sect. 6.1.2.2 is worth developing. Produce a

specification for a simple but full programming

language for the manipulation of dates and code an

implementation. What other features could

reasonably be added to a language like this?

6.2. Some programming languages (for example, Pascal)

allow the nesting of function definitions. How

valuable is this feature? Can it be added easily to

DL? If so, plan an implementation by starting with

the changes necessary for the symbol table.

6.3. What are your views on strong type checking? Does

it get in the way?

6.4. Investigate some IRs used in production compilers.

For example, look at LLVM’s IR and the Java Virtual

Machine.

6.5. It should be straightforward to implement a constant

folding optimisation during the traversal of the

abstract syntax tree to generate the IR. Or is this

easier to do on the three-address code once it has

been generated?

6.6. Many programming languages (C included) support a

switch statement. Devise an abstract syntax tree

switch statement. Devise an abstract syntax tree

structure to support this statement and consider its

implementation by showing how intermediate code

can be generated. Are there extensions to the three-

address code proposed in this chapter which would

be appropriate? Where would you check for the

existence of duplicate case labels? It may be helpful

to consult the discussion of switch statements

in [1].

6.7. Design a three-address code for C or for any other

language you know. How general purpose can you

make a three-address code?

6.8. Write an interpreter for a three-address code. Parsing

the statements could be done easily with flex/bison-

style tools.

6.9. Try using C (or any other high-level language) as an

intermediate representation for DL.

6.10. Is it easy to determine whether a value is being

returned by a DL function? How would you

implement an acceptable checking algorithm?

6.11. The material in this chapter has shown that the

syntax specification of DL is telling just part of the

language definition story. Some of the issues have

already been highlighted. There are more.

6.12. What would be the semantic analyser consequences

of introducing a new data type (say, float) to DL?

References
1. Aho AV, Lam MS, Sethi R, Ullman JD (2007) Compilers – principles,

techniques and tools, 2nd edn. Pearson Education, Upper Saddle River
[MATH]

2. Cytron R, Ferrante J, Rosen BK, Wegman MN, Kenneth Zadek F (1991)
Efficiently computing static single assignment form and the control
dependence graph. ACM Trans Program Lang Syst 13(4):451–490
[CrossRef]

3. Cooper KD, Torczon L (2011) Engineering a compiler, 2nd edn. Morgan
Kaufmann, San Francisco
[MATH]

4. Bilardi G, Pingali K (2003) Algorithms for computing the static single
assignment form. J ACM 50(3):375–425

5. Allen FE (1970) Control flow analysis. ACM SIGPLAN Notices 5(7):1–19
[CrossRef]

6. Ferrante J, Ottenstein KJ, Warren JD (1987) The program dependence
graph and its use in optimization. ACM Trans Program Lang Syst 9(3):319–
349
[CrossRef][MATH]

7. Stanier J, Watson D (2013) Intermediate representations in imperative
compilers: a survey. ACM Comput Surv 45(3):26:1–26:27
[CrossRef]

8. Holub AI (1994) Compiler design in C, 2nd edn. Prentice Hall International,
New York
[MATH]

9. Fraser C, Hanson D (1995) A retargetable C compiler: design and
implementation. Addison-Wesley, Reading
[MATH]

10. Pierce BC (2002) Types and programming languages. The MIT Press,
Cambridge
[MATH]

11. Mogensen TÆ (2011) Introduction to compiler design. Undergraduate
topics in computer science. Springer, Berlin

12. Lindholm T, Yellin F (1997) The Java virtual machine specification. The
Java series. Addison-Wesley, Reading

http://www.emis.de/MATH-item?1155.68020
http://dx.doi.org/10.1145/115372.115320
http://www.emis.de/MATH-item?1058.68036
http://dx.doi.org/10.1145/390013.808479
http://dx.doi.org/10.1145/24039.24041
http://www.emis.de/MATH-item?0623.68012
http://dx.doi.org/10.1145/2480741.2480743
http://www.emis.de/MATH-item?0813.68025
http://www.emis.de/MATH-item?0847.68025
http://www.emis.de/MATH-item?0995.68018

13. Grune D, Bal HE, Jacobs CJH, Langendoen KG (2000) Modern compiler
design. Wiley, New York

14. Appel AW (1992) Compiling with continuations. Cambridge University
Press, Cambridge

15. Peyton Jones SL (1987) The implementation of functional programming
languages. Prentice Hall international series in computer science. Prentice
Hall, Englewood Cliffs

16. Bernstein RL (1985) Producing good code for the case statement. Softw
Pract Exp 15(10):1021–1024
[CrossRef]

17. Hennessy JL, Mendelsohn N (1982) Compilation of the Pascal case
statement. Softw Pract Exp 12(9):879–882
[CrossRef][MATH]

http://dx.doi.org/10.1002/spe.4380151009
http://dx.doi.org/10.1002/spe.4380120907
http://www.emis.de/MATH-item?0488.68012

(1)

© Springer International Publishing AG 2017

Des Watson, A Practical Approach to Compiler Construction, Undergraduate

Topics in Computer Science, DOI 10.1007/978-3-319-52789-5_7

7. Optimisation
Des Watson1

Department of Informatics, Sussex University,
Brighton, East Sussex, UK

Des Watson

Email: desw@sussex.ac.uk

The
generation of high-quality code is a key objective in the

development of compilers. It is of course true that a usable

compiler can be written with little or no provision for

optimisation, but the performance of the generated code

may be disappointing. Today’s production compilers can

generate code of outstanding quality, normally much better

than even hand-written target assembly code produced by

an expert. However, producing this high-quality code using

a compiler is not at all easy. The optimisation algorithms

used are often complex and costly to run, they interact with

each other in unpredictable ways and the choice of which

techniques to use for best results will be influenced by the

precise structure of the code being optimised. There is no

easy solution and an approach to optimisation has to be

adopted which works well with the “average” program.

Is optimisation important? How hard should a compiler

work to produce highly optimised code? The answer

depends on the nature of the program being compiled and

mailto:desw@sussex.ac.uk

on the needs of the programmer. For many programs,

optimisation is an irrelevance but performing it does no real

harm. For other programs resource constraints may mean

that optimisation is essential. An argument often heard

against the need for optimisation, both by the programmer

and by the compiler, is that by waiting for processors to get

fast enough the problem will disappear. As the growth in

processor speeds seems to be slowing, the wait for

sufficiently fast processors may be longer than expected.

This makes it increasingly important for both the

programmer and the compiler writer to be aware of the

importance of optimisation.

Before examining practical techniques, it is important to

remember that the term optimisation when used in the

context of compiler design does not refer to the search for

the “best” code. Instead it is concerned with the generation

of “better” code. We will return to this issue later in Chap. 8

when covering the topic of superoptimisation. Another

related issue is the choice of criteria for code improvement.

Are we looking for fast code, small code (in terms of total

memory footprint, code size, data usage or some other

criterion), code that generates the least i/o traffic, code that

minimises power consumption, or what? Some optimisations

trade speed improvements against code size and so it is

essential to know the real optimisation goal. In most of the

techniques described in this chapter, the optimisation goal

is to reduce the instruction count. This is a reasonable

target for intermediate code because it has the effect of

reducing code size and almost always reducing execution

time. If specific aims for optimisation are required in a

particular compiler then each optimisation applied should

be examined in detail, both in isolation and when combined

with other optimisations, to determine its effect on the

optimisation goal.

7.1 Approaches to Optimisation
Section 2.​4 showed where code optimisation can be placed

amongst the modules of a compiler. This chapter

concentrates on target machine-independent optimisation,

operating on the intermediate representation generated by

the semantic analyser. Chapter 8 will cover the optimisation

during and after the code generation phase. This is

machine-dependent optimisation. Machine-independent

optimisation can be very effective and there are many ways

in which code improvements may be made at this stage of

compilation. It is helpful to think about this optimisation as a

collection of techniques applied in turn to the intermediate

representation, in effect a set of IR filters. There is no

necessity for the same intermediate representation to be

used for both the input and the output of this optimisation

phase, but in this chapter it is assumed that the IRs are the

same. This raises an important issue of how these

optimisation filters may be combined. It would be really

convenient if the optimisation process could be achieved by

combining as many filters as are available or necessary, in

an arbitrary order. But these optimisation processes interact

with each other in complex ways and they may even need

repeating. Therefore, optimising the ordering of optimisation

filters can be an surprisingly complex task.

7.1.1 Design Principles
In today’s production compilers, a large proportion of the

compiler’s code is concerned directly with optimisation and

most of the research currently being undertaken in the field

of compiler design is now concentrated on optimisation-

related issues. But there are still limits to how far

optimisation can go. For example, making significant

changes to the algorithms in the source program is not

generally appropriate. For example, it is probably not the

role of the compiler to recognise a source code sequence

that has been written to invert a matrix and replace it by

code that uses a faster algorithm. But it probably is

appropriate for the compiler to evaluate certain source code

sequences at compile time and use the results in the

generated code. This, of course, can only be done when

there is no doubt that the evaluation process will terminate.

Completely running the whole program at compile time is

rarely possible and indeed impossible if the program is

expecting input during execution.

The optimisation process should not alter the program’s

semantics. Optimisations must be safe in that the results

from running a program with and without optimisation

should be identical. When developing a compiler it is easy to

make mistakes concerned with safety. For example it is

possible to make the false assumption that the code of a

loop is always executed at least once. It should be

mentioned here that the issues concerned with the

preservation of program semantics may turn out to be

complex and unclear. Many compilers have been developed

that openly make changes to the semantics of a program on

optimisation. These changes are documented so hopefully

the programmer is aware of them and they usually occur in

the handling of numerical calculation errors—maybe

overflow is not detected when optimisation is turned on.

Whether or not this type of optimisation is acceptable

depends on the nature and behaviour of the program being

compiled.

The optimisations should also be worthwhile in that they

must produce a noticeable benefit to whatever it is that is

being optimised. For example, a loop unrolling optimisation

might enlarge the executable code so much that the loop no

longer fits in the processor cache, resulting in the code

becoming slower. Some optimisations can be very

expensive to perform and therefore may not be worthwhile

if, for example the target program is only going to be run

once.

These goals to ensure that optimisations are both safe

and worthwhile may sound obvious, but achieving them is

far from automatic. Giving the user of the compiler the

ability to choose whether to include such optimisations is

wise.

The compiler tries to predict what is going to happen

when the target machine program actually runs and the

compiler has to use this information in its optimisation

processes. For example, it is sensible for the optimisation to

be concentrated on code that is expected to run many

times. By ensuring that code within loops is as efficient as

possible, a significant improvement can be made to overall

program performance. An interesting approach is to compile

the source program and then start running the generated

code, allowing feedback about performance to pass from

the running program back to the compiler. The compiler

then makes corresponding modifications to the code (for

example, by performing further optimisation on blocks of

code that seem to be executing frequently), the executing

code is updated and continues in execution. This is

performed repeatedly. Here, the compiler can make

optimisation decisions based on real dynamic data rather on

static speculation based on the source program.

While developing optimising transformations within the

compiler, it is important to remember how the intermediate

code is transformed during code generation, machine-

dependent optimisation and while actually running on the

target machine. Do not implement optimisations in the

machine-independent stage that can be better done during

code generation. Furthermore, modern processors usually

include powerful features to perform runtime optimisation.

For example, some processors support out-of-order

execution where if an executing instruction stalls because

results generated by earlier instructions are not yet

available, the processor can automatically start executing

other instructions that are ready. Any necessary adjustment

to generated results because of the changed order of

instruction execution is also performed automatically by the

hardware. Not everything has to be done in the compiler.

What sort of optimisations can be done on the

intermediate representation at this stage of compilation?

Optimisations that concentrate on the removal of code that

is unreachable, performs no useful function or is somehow

redundant are particularly important. Common

subexpression elimination can be done here. It may be

possible to move code to parts of the program that are

executed less frequently. For example, loop invariant code

can be moved out of a loop. Operations on variables whose

values are known at compile time can be performed at this

stage. Constants can be folded and values propagated. If

the target machine offers any form of parallel processing it

may also be possible to use dependence analysis to

determine which code fragments are independent and

therefore candidates for execution in parallel.

Code optimisation is difficult. Coding an optimising

compiler should not be undertaken lightly. But today’s

compilers can produce impressive code because the

complexity of the interactions of operations specified by the

source program and the complexity of the characteristics of

the target machine can be managed effectively by clever

algorithms and the computational power used by the

compiler.

A few of the many available optimisation techniques are

presented below. Techniques of local optimisation

concentrate on basic blocks. These are comparatively small

blocks of code where the analysis is undemanding. With

global optimisation the issues of potentially complex flow of

control have to be taken into account and the complexity of

analysis for optimisation greatly increases.

7.2 Local Optimisation and Basic Blocks
The stream of intermediate code generated by the front-end

of the compiler may well have a complex control structure

with conditional and unconditional branches, function calls

and returns scattered through the code. However, there will

be sections of code not containing any of these transfers of

control—“straight-line code”—where control starts at the

first instruction and passes through all the instructions in

the section. These sections of code are called basic blocks.

Partitioning the intermediate code into a set of basic

blocks is not difficult. Control enters a basic block via the

first instruction of the block. Therefore this first instruction

must either be the destination of some sort of branch

instruction, the instruction following a conditional branch or

the first instruction of a function or the main program. The

last instruction of the basic block must be a conditional or

unconditional branch instruction, a return instruction or the

last instruction of the main program. Section 6.​4.​2.​2 shows

how the basic block can be used as an integral part of an

intermediate representation and Fig. 6.​5 gives an example

of a basic block representation of a simple program.

Another example comes from the main program of the

factorial program in the appendix and is shown in Fig. 7.1.

Producing this control flow graph is often the first step in

the intermediate representation optimisation process. The

next step is to examine each basic block individually and

perform local optimisation. This local optimisation is

completely independent of the flow of control between basic

blocks.

7.2.1 Constant Folding and Constant
Propagation
There
are many simple optimisations that can be done when

the values of operands in the IR instructions are known or

can be calculated. Consider the DL code:

Fig. 7.1 Basic blocks of factorial main program (see appendix)

producing the code (taken as a basic block):

A good first step is to replace all operators with explicit

constant arguments by the result of the computation. Here,

3 * 4 can be replaced by 12. The computation is being

done at compile time rather than at runtime. But there is

more that can be done by propagating known values.

Stepping through the basic block code instruction by

instruction, right-hand sides can be replaced by constant

values where they are known. We then obtain the code:

The two arithmetic operators have been optimised away.

Clearly there is more that can be done, and this code will be

improved a little more in the examples below.

This type of analysis can be taken further. By replacing

expressions in the code having constant operands with their

corresponding values the program is essentially being run

(or partially run) at compile time. Is it feasible to actually

run the program at compile time, assuming it needs no user

input, and then generate a program that outputs the

results? For some simple programs this will happen as a

consequence of conventional static analysis, but in a more

general case this extreme attempt at optimisation is not

wise. With more complex control flow the analysis becomes

really difficult and it has to be known in advance whether

the program will terminate. This is not possible in general.

7.2.2 Common Subexpressions
Common subexpression
elimination is a well-known

optimisation and it is a technique that has been used by

programmers as well as by compilers for many years. Some

programmers, when faced with code of the form

x = (a*a-1)/(a*a+1)

will automatically rewrite it as

t = a*a; x = (t-1)/(t+1)

even when subconsciously aware that the compiler will

be doing that optimisation automatically.

Performing this type of optimisation within a basic block

can be done by sequentially passing through the basic

block, keeping a record of the values calculated so far. For

example, suppose the source code contains two

assignments to x and y.

The corresponding IR together with the IR rewritten so

that the vg variables are replaced by their source program

names to make the example a little clearer is shown here.

The algorithm to find common subexpressions scans

through the IR, maintaining a list of computed expressions

and where their results are stored. When an instruction is

found with a computation which has already been

performed on its right-hand side, it is replaced by an

assignment to the variable/register already containing the

value. Entries in the list can be invalidated by encountering

an instruction that updates the value in a variable used in

the expression. For example, the IR instructions above can

be scanned one after the other:

Making these two replacements and scanning through

once again we obtain:

Redundant registers can now be removed. If an

instruction of the form r1 = r2 is found then subsequent

uses of r1 can be replaced by r2 and the assignment r1 =

r2 can be removed. We therefore obtain:

Then again we can scan for common expressions on the

right-hand sides:

Making the indicated replacement, removing the

redundant r7 (replacing it by r2) and scanning again, we

obtain:

There are no remaining common subexpressions. This

marks the end of this optimisation. The eleven original

instructions have been optimised to eight.

There is a little more to add to this process. The search

for common subexpressions should take into account that

the value of an expression of the form a + b is the same as

b + a. Also, the expressions a + c and a + b + c may

have a common subexpression but it depends on what the

language definition says. If expressions of the form a + b +

c are supposed to be evaluated from left to right, then there

is no common subexpression.

Also, care has to be taken when deleting

registers/variables. In the example above, the first register

to be deleted was r8, being replaced by r3. Subsequent

uses of r8 will have already been replaced by r3 in the basic

block. But a check may have to be made to see whether r8

is used in any of the basic blocks that can follow the current

block. If so, the assignment to r8 has to stay or the code in

the other basic blocks has to be altered to use r3 instead.

This issue will be examined again in Sect. 7.3.1.

Common subexpressions can be killed by assigning to a

variable used in the expression. For example, consider:

After the first instruction, the list of already computed

expressions will store the fact that the value of a * a is

stored in r1. But encountering the third instruction will kill

the a * a entry in the list (unless it can be guaranteed that

the value of a is already 3 when this block of code starts).

The value of a has changed and so the value of a * a is no

longer stored in r1. There are no common subexpressions

here, but the second a * a can be replaced by 9.

In languages that allow the access to variables via

pointers, this problem of common subexpression analysis

becomes more awkward. Fortunately DL does not suffer

from this issue, but languages such as C do. Consider the

code:

At first sight, it looks as though a * a is a common

subexpression, but there is an aliasing problem. What is p

pointing to? Could it possibly be pointing to a? Or can the

compiler guarantee that it is not pointing to a? In general

the analysis of pointers is notoriously difficult and it is likely

that the default action here is to play safe and recalculate a

* a. Similar considerations apply to function calls. A

function call can update values in variables so that relying

on variables keeping their values over a function call is not

possible unless a full analysis of the effects of the function

has been done.

7.2.2.1 Arrays

The intermediate code generated for the DL source

statement a[i] = a[i]+ b[i] could have the form:

Here, vg0 is i, vg1 is a and vg11 is b. This code looks

perfectly reasonable, but consider the target machine code

generation of the array access operations. Suppose the

target machine is byte-addressed and each element of a

and b uses 4 bytes, making the assumption that integers in

DL are represented using 4 bytes. A simple array reference

then requires the computation of the index value,

multiplication by 4 and adding that value to the start

address of the array to obtain the address of the selected

element. In the example above, the value vg0 has to be

multiplied by 4 on three separate occasions. This is a clear

example of a common subexpression. But this common

subexpression is hidden within the IR being used and a

lower level IR would allow the optimisation to be achieved

with ease. Such an optimisation could only be performed at

this stage if the IR became target machine-dependent

because the use of the factor 4 depends on the architecture

of the target machine. There is no correct answer here and

it is just important to ensure that this form of common

subexpression elimination is performed somewhere,

because considerable gains can be achieved by optimising

code manipulating arrays.

7.2.3 Elimination of Redundant Code
Looking through examples of intermediate code generated

by the DL front-end, it is obvious that some improvements

can be made even after constant analysis and common

subexpression elimination have been performed. For

example, looking again at the code before constant

analysis:

it is clear that r1 and r2 are redundant so the code could

be improved to read:

and then after constant values are calculated and

propagated:

Can the removal of redundant variables/registers be

done after the constant analysis? Going back to the code we

have already generated:

it is then obvious that if r1 and r2 are not read in

subsequent instructions we can dispense with those two

assignment instructions to r1 and r2. Finding these dead

registers or variables is important and gives the opportunity

to remove redundant code.

Removing an unnecessary assignment to register r

requires us to check whether r is ever read in another

instruction reachable from the assignment. If there are no

further reads from r or if r is written to before any further

reads, then the assignment to r can be removed. Doing this

wholly within the basic block is really easy because the flow

of control is from the first instruction to the last instruction.

But if r is referred to in another basic block, we have to

determine whether the execution of this other reference can

follow the original assignment. This is more complicated and

the process is examined in Sect. 7.3.2.

There are other forms of redundant code which can be

removed at this stage. For example, code of the form

can be simplified by removing the if statement

completely, assuming that there are no jumps into the code

following the if. In the case of DL there is no difficulty here,

because DL does not support labels or goto statements.

If the target of a jump instruction is another jump

instruction then the first jump can be changed to point to

the destination of the second jump.

Any unlabelled instruction following an IR goto or return

instruction can be removed because they can never be

executed. The example IR in the appendix shows an

example of this in the form of a return followed by a goto.

Various algebraic simplifications can also be made at this

stage. For example, the expression x + 0 can be replaced

by x, x * 1 by x, x * 0 by 0 and so on.

7.3 Control and Data Flow
Section 7.2 showed how to take the intermediate

representation of a program and divide it into basic blocks.

A control flow graph can then be constructed (see Fig. 7.1)

to show how control can pass from one basic block to

another. This structure forms the basis for performing

various non-local optimisations.

7.3.1 Non-local Optimisation
Once each basic block has been optimised, as described

above, it is time to consider the flow of control between

basic blocks. What does a basic block carry forward to its

successor?

In performing local common subexpression elimination a

list of expressions and where they are stored is maintained

as the basic block is scanned. That list can be saved when

the end of the basic block is reached and tagged with the

identity of that basic block. The list can then be passed on

to the next basic block in the execution path. This is part of

the technique of data flow analysis
. There are two

possibilities, as shown in Fig. 7.2.

Fig. 7.2 Flow between basic blocks

The list of expressions and corresponding storage

locations at the end of basic block b1 is passed directly into

the analysis of basic block b2 so that b2 can make use of

any subexpressions generated by b1. The same applies to

b3. In the case of blocks b4 and b5 the situation is a little

more complicated because when analysing b6 there is no

knowledge of whether the entry to b6 was via b4 or b5.

Therefore, the list of expressions and corresponding storage

locations at the start of the analysis of b6 has to be the

intersection of the two sets, from b4 and b5.

Suppose, for example, that the code in b4, b5 and b6

contains these instructions:

Then the common subexpression elimination can be

performed.

But if the code is slightly different so that there is a

mismatch of storage locations for the expression, as shown

here:

Then vg5 has to be set to either vg2 or vg3. This effect can

be achieved by introducing a new temporary register as

follows:

7.3.2 Removing Redundant Variables
In these program
transformations, the number of variables

or registers being used tends to increase. It is important to

make sure in this stage of optimisation that efforts are made

to remove redundant variables. These are variables that are

assigned a value and then are not used. In the last example

in the previous section, block b6 starts with an assignment

(vg5 = r10). Whenever a simple assignment like this is

encountered, the code following the assignment should be

checked and all uses of the value of (in this case) vg5 should

be replaced by references to r10. If all such uses of vg5 can

be removed, then the original assignment is redundant and

therefore it can be removed.

Inevitably there are some complications. In DL’s IR, there

are three different types of variable. The vg variables are

tied to globally defined variables in the source language and

the r variables are used for temporary values and other

compiler-related purposes. These two sets of variables have

global existence. They are present throughout the running

of the program and there is no logical difference between

the two sets. They can be treated identically. However, the

vl variables are local to functions. They come into existence

when the function is entered and disappear when the

function returns. Therefore, at this stage of optimisation at

the IR level, the vl variables can be handled just like all the

others except that all analysis of these has to be restricted

to the current function. Global analysis is required for vg and

r variables.

This leads on to the concept of live variable analysis.

Suppose the variable x is assigned the value 1 (x is

“defined”), and then x is used later in the code:

The variable x is said to be live between its definition and

its use. In the code:

the assignment x = 2; kills x and the live range ends

here. An analysis of live ranges helps with the optimisation

in that variable assignments that have no corresponding

uses can be removed. This analysis is complicated by the

fact that the definition and use do not have to be in the

same basic block and so control flow between basic blocks

has to be examined. If there is a path of execution between

the definition and the use, then the definition has to stay.

But in general, it is not possible to predict actual execution

paths at compile time. For example:

It may be that p is never greater than q at runtime so

that the assignment a = x + 1 is never performed. But the

compiler is unlikely to be able to make this assertion and

has to play safe, keeping the definition of x and the

conditional statement in the compiled code.

Data flow analysis is not easy and algorithms are

influenced by the choice of intermediate representation. The

use of static single assignment form (see Sect. 6.​4.​1.​2) can

simplify this analysis as can other data flow-oriented IRs.

Various approaches to many forms of flow analysis are

included in the references mentioned in the further reading

section in this chapter.

7.3.3 Loop Optimisation
All
the general-purpose optimisation techniques described

so far can of course be applied to the code within loops, and

if the optimisations are for execution speed, this is where to

apply optimisation for most benefit. But there are some

techniques particularly related to loop optimisation that can

have significant effects on execution speed.

The first step is of course to identify the loops. This can

be done using the control flow graph and it involves finding

a basic block (the loop header) through which all paths to

basic blocks in the loop pass and also finding a path from

one of the loop’s blocks back to the loop header (the back

edge). The header block is said to dominate all the nodes in

the loop. It should be possible to follow a control path from

any of the nodes in the loop to any of the other nodes in the

loop without passing through a node not in the loop.

Once the loops have been identified, each can be

optimised in turn.

7.3.3.1 Removing Loop-Invariant Code

If a
computation is performed in a loop such that the values

used in the computation remain unchanged for each

iteration of the loop, then the computation should be

performed just once before the loop starts. The loop

invariant code is hoisted out of the loop. For example in

the n*n computation is done each time the loop executes

but it only needs to be done once because n is a loop

invariant—it does not change as the loop is executed. The

code then becomes:

This proves to be a fairly simple optimisation to apply.

Finding loop invariants is based on finding and then tagging

loop invariant variables/registers and then the

corresponding loop-invariant computations.

Note that the compiler is not performing the movement

of loop-invariant code at the source code level. This

transformation is being done on the IR. This means that it is

possible to apply this type of optimisation even when it

could not be done by modifying the source code. For

example, there may be good opportunities for loop-invariant

code motion when using multi-dimensional arrays in loops.

Consider the C program fragment:

Finding the offset from the start of the array of element

a[i][j][k] does not need to be done from scratch on each

iteration of the loop. The offset calculations involving the

subscripts i and j can be done outside the loop. Just as in

Sect. 7.2.2.1, the IR has to be designed so that this type of

optimisation can be achieved.

Finally, although it is unlikely to be a problem with this

type of optimisation, any movement of loop-invariant code

must take into account the possibility that the loop is not

executed at all.

7.3.3.2 Induction Variables

Loops often contain one or more variables that are

incremented or decremented by a constant value each time

control passes through the loop. In other words, these

variables take values which are linear functions of the loop

counter, containing the number of times the loop has been

executed since it was last entered. Consequently a variable

whose value is a linear function of induction variables must

also be an induction variable. They keep in step with each

other as the loop executes. It may then be possible to

reduce the number of induction variables in a loop by

replacing induction variables by linear functions of other

induction variables.

7.3.3.3 Strength Reduction

It may be possible to save
some processor cycles by

replacing potentially costly operations on induction

variables by cheaper operations. For example:

Here, t is an induction variable. The code can be

rewritten:

The multiplication operator has been replaced by a

presumably cheaper addition operator. Clearly this

optimisation is machine-dependent, but it is probably safe

to assume that most common target architectures perform

faster additions than multiplications.

7.3.3.4 Loop Unrolling

Consider
the two pieces of code:

Many programmers would produce the code on the left

(or something like it, probably using a for loop), but the

code on the right could be more efficient, in speed and also

possibly in memory usage. The code on the right is

produced by unrolling the loop on the left and it obviously

avoids the loop control variable i and the code that has to

be generated at the start and at the end of the loop.

This form of loop unrolling is only applicable when the

number of iterations is known at compile time. Loop

unrolling should always reduce the total number of

operations performed by the target machine in executing

the code. But if the number of copies of the body of the loop

is large because the total number of iterations of the loop is

large, then there may well be code space issues. There is a

clear tradeoff here of code space against execution time

and an appropriate compromise has to be reached.

As well as removing the loop control code, loop unrolling

may have further benefits by creating opportunities for

other optimisations. The expanded code can be optimised

using the IR optimisation techniques already described in

this chapter and also there may be more opportunities for

pipeline optimisations on the target machine. However,

depending on target machine code sizes, it could be that

there are performance penalties in unrolling because the

code no longer fits in the target machine’s instruction

cache. These are complex interrelated issues requiring

careful analysis.

7.4 Parallelism

The analysis that takes place on the intermediate

representation as it is being optimised examines control and

data flow through the program. This type of analysis is also

relevant for the search for sections of the program that can

be executed in parallel.

Parallelism has become essential for high-performance

computing—high performance now implies parallelism.

Parallelism can exist at several different levels in a modern

computer system. Instruction-level parallelism can be

supported by the processor’s hardware where several

instructions can be in execution at any one time. This is the

technique of pipelining. In some processors this parallelism

is automatic, performed directly by the hardware. In other

processors, clever sequencing of machine instructions

generated by the compiler is required to make significant

improvements to performance.

Some machines support vector instructions
allowing

operations to be performed on all elements of a vector (a

single-dimensional array) simultaneously. Operations such

as:

can be implemented using vector operations, and if the

processor allows vectors of size N or greater, the

implementation is particularly simple, presumably resulting

in a very fast execution time.

Multicore processors are now widespread. These are

processors that support multiple processor units (cores)

sharing main memory and other hardware and these cores

can execute machine instructions simultaneously. To make

the best use of such systems the compiler has to produce

multiple instruction streams, one for each core, that can be

executed simultaneously. But for this to work reliably, the

instruction streams generated for each core must be

independent. They must not interfere with each other, for

example by writing to the same memory location. There

also has to be synchronisation between the cores. Note that

the cores need not have the same architectures. It could be

that one of the cores has a special purpose (for rendering

graphics, for example) and in such non-homogeneous

systems, the different cores should be given workloads

appropriate to their architectures.

Other models of parallelism are possible. For example,

computer systems can be interconnected via the internet.

Such loosely coupled systems can clearly execute programs

in parallel, but the cost of communication between the

executing streams is much greater than if they were

executing on separate cores in the same processor.

Furthermore, the sharing of data between these processors

is more complex.

These approaches to parallelism all have very different

characteristics and in order to make use of this parallelism

to achieve high-performance computation, different

software development and compilation techniques have to

be used. The hope that with N processors the program will

run N times faster is rarely realised. Furthermore, compiler

technology of today is far from being able to take an

arbitrary program written in a high-level language and

compile it so that it runs at maximum efficiency on a

particular multiprocessor system. In some limited

circumstances we are close to this goal, but there is still a

great deal of work to be done. This is a research issue that

has been alive for many years and although good progress

has been made, there are still many difficult questions to

solve.

It is clear that parallelisation by the compiler is a hard

problem. But it certainly is a problem that is worth tackling

because there are so many computer applications that

require huge amounts of computation necessitating the best

performance to be squeezed from the hardware. Many of

these applications have the potential for parallelisation,

using large arrays and extensive numerical computation.

There is of course an important underlying issue in the

implementation of these applications which is whether they

should be coded or recoded by the programmer to make the

parallelism explicit. There are now many programming

languages supporting the specification of parallel

computation. Is the programmer, with a good knowledge of

the system design and the algorithms being used, in the

best position to decide how the parallelism should be

configured? The programmer can also choose algorithms

wisely because not all algorithms to perform a particular

task adapt well to parallel execution. The alternative

approach is to allow the compiler and other software tools to

partition the application appropriately. So what can be done

by the compiler?

Instruction-level parallelisation
has been studied

extensively and effective techniques are available. This area

is covered in Chap. 8. This is a local optimisation in the

sense that comparatively small sets of machine instructions

have to be examined and rearranged at each step.

Vectorisation too has received a great deal of attention and

compiler technology can now generate code making good

use of the vector instructions available in many of today’s

architectures. But solving the general problem of taking

existing code, detecting sections that can be executed in

parallel and determining whether communication costs

negate the performance benefits of particular instances of

parallel execution is hard and generating any solutions with

a degree of optimality is even harder. Fortunately, there are

many aspects of this general problem that are well

understood and some of these issues are examined here.

7.4.1 Parallel Execution

The design of the target system is central to the choice of

approach to generate parallel code. Although it retains

many machine-independent characteristics, parallelisation

is clearly a machine-dependent optimisation, and therefore

becomes another process that may sit awkwardly in the

traditionally machine-independent optimisation phase. In

designing parallelisation strategies the key considerations

are the number of processors available and whether the

processors have shared memory. The style of the

decomposition of the problem into sub-problems may

depend critically on the number of processors available—2,

10, 1000, a million,...? Systems without shared memory

require explicit communication between the processor

nodes and this communication may be very slow in

comparison with the processor execution speed. In the

examples in this section, the assumption is that the

processors share a common architecture. These are

homogeneous systems.

Consider a simple loop:

There is clearly scope for vectorisation here, but suppose

that we are working on a computer system with multiple

processors. There are several ways in which parallelism can

be used to speed up the execution of this code, including:

If there are N or more processors, each of the loop

iterations can be done in parallel on N processors;

If there are 2 or more processors, the first loop (the loop

formed by the execution of the first assignment

instruction) can be performed on one processor while

the second loop is performed on the another processor.

If number of processors then the N individual

iterations could be distributed fairly amongst the

processors available.

It may not be possible for the compiler to guarantee that

it has made the best choice because the choice depends on

information that may not all be available at compile time.

For example, the actual value of N is clearly important. But

a choice can be made.

There may be constraints on the decomposition into

parallel processes. Consider modifying the code above:

Just statement 2 has been changed, replacing b by a.

This immediately raises a problem with the sequencing of

statements. In any individual iteration of this loop,

statement 1 must be executed before statement 2, because

the value generated by statement 1 is used by statement 2.

In this case the opportunities for parallelisation become

somewhat restricted.

7.4.2 Detecting Opportunities for
Parallelism
To understand how parallelism is affected by the detail of

individual statements, a much simpler scenario should be

considered where the parallel execution of individual

statements is allowed. Suppose the three statements

appear in a program. When coded in a traditional

programming language there is an implicit implication that

these statements are executed sequentially, s1 followed by

s2 followed by s3. Are other orderings of statements

possible? In particular, would it be possible to allocate these

three statements to three processors, executing the

statements concurrently? It is easy to see here that these

statements can be executed in any order. There is no direct

interaction between them. This means that the three

statements can be executed in parallel. But if small changes

are made to this code, constraints are introduced:

Here, s1 has to be executed first (and its execution has

to complete so that the variable a is set) and then s2 or s3

can execute. s2 and s3 can execute in either order (or,

indeed, simultaneously). There is said to be a true

dependence
from s1
to s2 and from s1 to s3. This

dependence information can be used to schedule the

execution of these statements.

If the code is changed to:

an ordering is enforced of s1 followed by s2. There is

antidependence from s1
to s2. This dependence can be

avoided by using a new variable name:

where there is now no dependence.

There is a third form of dependence. Consider:

Here, there is a forced ordering on the statements

because the value in a after both of these statements have

been executed depends on the order of their execution.

There is an output dependence from s1
to s2. Again, this

dependence can be avoided by using a new variable name.

A similar form of analysis can be used to determine the

existence of dependence between groups of statements and

this type of analysis can determine whether blocks of code

can be executed safely in parallel. Dependence analysis is

also central to the task of instruction scheduling as will be

shown in Chap. 8.

7.4.3 Arrays and Parallelism
Loops are particularly important in parallelism detection.

Consider the vector version of the first piece of code in the

last section.

Where is the parallelism here? If there are N or more

processors available, then each iteration of the loop could

be assigned to a different processor and s1, s2 and s3

executed sequentially on each processor. Or with three

processors the loops could be separated into three

independent loops so that the loop whose target is s1 is

executed on one processor, s2 on another and s3 on a third.

It is this second form of parallelism that we should be more

interested in here. The aim is to distribute the statements or

maybe groups of statements in a loop to different

processors so that the loops are executed in parallel. It is a

form of vectorisation.

It is easy to see how problems can arise. Consider:

Here again there is a true dependence from s1 to s2 and

from s1 to s3. The implication is that the s1 loop has to be

executed and then the s2 and s3 loops can be executed in

parallel. Note that we are assuming here that the s1, s2 and

s3 loops are indivisible—for example, we cannot execute a

bit of s1 and then a bit of s2 and so on.

Consider another example:

Parallelising s1 and s2 here is not possible because there

is an antidependence from s2 to s1. This is easier to see if

the loop is unrolled:

and it is clear that there is an antidependence from s2 in

one iteration to s1 in the next iteration. Hence, there is no

easy parallelism here.

Obviously the subscripts matter in these array examples.

Consider:

This is vaguely similar to the last example, but here there

is no dependence between s1 and s2 and so these two

loops may be executed in parallel. There is no dependence

because the sets of values generated by i*2 and i*2 + 1

have no common values.

The more general case has the form:

F and G are functions returning integer results in the

appropriate range. To determine whether there is any

dependence between s1 and s2, the set of all values of

F(i) for L i U and the set of all values of G(i) for L i

 U are compared and if there are any common values, then

there is a dependence. In general, this is not a sensible or,

indeed, feasible computation. It can be very expensive (if U

is very much greater than L) and not possible if L and U are

not known at compile time. So, in the general case, a

dependence has to be assumed. But if the problem can be

simplified so that F and G are linear functions of i, then

there is a better chance of a solution. Consider:

In this code p, q, r and s are all integer constants (i.e.

their values are known at compile time). In this case, the

GCD test can be applied and this states:

The greatest common divisor (GCD) of p and r must

divide (q - s) with no remainder for there to be

dependence.

Consider the code:

Here, p has the value 4, q has the value 0, r has the

value 6 and s has the value 1. GCD(p,r) is 2, q - s has the

value –1, the integer division –1/2 has a remainder and so

there is no dependence here.

This is a conservative algorithm in that it can claim that

there is dependence when in fact there is none. This is

because the algorithm makes no use of the values L and U.

Fortunately this is the safe thing to do. If the algorithm

states that there is no dependence then the statements can

be parallelised safely. If the algorithm states that there is

dependence, there is a chance that there is in fact no

dependence, and the optimisation has been lost, but the

right answer from the compiled code will still be produced.

This algorithm can be extended easily to handle multi-

dimensional arrays. Other more powerful tools have been

developed to obtain better solutions of this problem, but this

algorithm is still widely used.

Once the dependences between statements have been

determined, it is possible to consider where parallelism can

be used to improve performance of the loops. A directed

graph is drawn for all the statements in the loop, one node

for each statements and directed paths between the nodes

to identify the dependences. There are then standard ways

of traversing the directed graph to identify which

statements can be parallelised and which have to be left as

they are.

7.5 Conclusions and Further Reading
Machine-independent optimisation is a well-studied area of

compiler design. It is a challenging area of research with the

optimisation algorithms being influenced by the designs of

the source language, the intermediate representation, the

target machine and the user’s requirements. Furthermore

the interactions between the optimisations are really

complicated and it is not possible to model the entire

optimisation process with any degree of precision. Extensive

empirical studies have to be performed to achieve reliable

results which can then influence compiler design.

Because of this complexity, there is little code in this

chapter illustrating optimisation algorithms. Instead, the

chapter has concentrated on some of the principles of

optimisation and the general techniques in widespread use

in compilers of today. Fortunately there is a large literature

covering this area. Much more detailed information about

optimisation and practical algorithms is found in textbooks

such as [1–5]. In particular a standard reference for control

and data flow is [3] and references [5–7] cover

parallelisation in detail. A classic paper on the program

dependence graph is [8]. There are survey papers too, for

example [9] giving a broad view of optimisation and [10]

covering the specific issue of generating compact code.

Some background information on programming language

constructs on which optimisation can be performed is found

in [11, 12].

There are many other interesting approaches to

intermediate code optimisation. For example the technique

of peephole optimisation
(covered in Chap. 8) can be

applied to the IR [13]. This proliferation of techniques makes

the problem of combining and ordering very difficult and an

important reference for this issue is [14].

Exercises

7.1 Have a look at the documentation of your favourite

compiler and try and find out which optimisations are

supported. If they can be controlled independently,

try to assess their effect on a simple benchmark

program.

7.2 Propose some guidelines for the implementation of

the loop unrolling optimisation. By how much is it

reasonable to increase code size? Try to assess the

effectiveness of this optimisation.

7.3 Try producing some examples of IR optimisation by

hand. Generate some code, preferably involving

array manipulation, and carry out local constant

propagation and common subexpression elimination.

By how much is the code improved?

This task can of course be partially automated by

writing an emulator for DL’s IR.

7.4 What should a compiler do when it tries to evaluate

an expression such as 1 / 0 at compile time?

7.5 The obvious exercise is to try implementing some of

the optimisations described in this chapter. Produce a

front-end to read DL’s IR instructions, generating

some appropriate internal representation. Then write

a back-end to output this format in the same

readable DL IR. Implement some simple optimisations

first such as constant folding, then local common

subexpression elimination, and then progress to the

more complex optimisations.

7.6 Consider extending the idea of constant propagation

to propagating ranges of values For example after a

to propagating ranges of values. For example, after a

particular statement, it may be possible to show that

variable i has a value which lies in the range 1 to 10.

Under what circumstances could this form of

optimisation help? What about maintaining sets of

possible values?

7.7 How much faster is addition than multiplication on

your favourite machine architecture?

7.8 An important machine-dependent optimisation

concerns locality of reference. The target machine

may run code faster if the data being manipulated

can all fit in the processor’s cache. Consider the

problem of multiplying two two-dimensional arrays.

How should the optimisation process try to maximise

the locality of reference? Is it a task for the machine-

independent optimisation phase?

7.9 Suggest a way in which the evaluation of a complex

arithmetic expression could be parallelised.

7.10 Suppose that a shared memory computer system

was available which used one million processor cores.

How could the compiler make use of such a machine

to the benefit of the programmer so that the

generated code made good use of the hardware?

What sort of software applications would benefit the

most?

References
1. Muchnick SS (1997) Advanced compiler design and implementation.

Morgan Kaufmann Publishers, Burlington

2. Cooper KD, Torczon L (2011) Engineering a compiler, 2nd edn. Morgan
Kaufmann, Burlington

3. Aho, AV, Lam MS, Sethi R, Ullman JD (2007) Compilers – principles,
techniques and tools, 2nd edn. Pearson Education, Upper Saddle River

4. Appel AW (2004) Modern compiler implementation in C. Cambridge
University Press, Cambridge

5. Allen R, Kennedy K (2002) Optimizing compilers for modern architectures –
a dependence-based approach. Morgan Kaufmann, Burlington

6. Zima H, Chapman B (1990) Supercompilers for parallel and vector
computers. ACM Press/Addison-Wesley, Reading

7. Wolfe M (1996) High performance compilers for parallel computing.
Addison-Wesley Publishing Company, Reading

8. Ferrante J, Ottenstein KJ, Warren JD (1987) The program dependence
graph and its use in optimization. ACM Trans Program Lang Syst 9(3):319–
349
[CrossRef][MATH]

9. Bacon DF, Graham SL, Sharp OJ (1994) Compiler transformations for high-
performance computing. ACM Comput Surv 26(4):345–420
[CrossRef]

10. Debray S, Evans W, Muth R, de Sutter B (2000) Compiler techniques for
code compaction. ACM Trans Program Lang Syst 22(2):378–415
[CrossRef]

11. Knuth DE (1971) An empirical study of Fortran programs. Softw Pract
Exper 1(1):105–133

12. Stanier J, Watson D (2012) A study of irreducibility in C programs. Softw
Pract Exper 42(1):117–130. doi:10.​1002/​spe.​1059

13. Tanenbaum AS, van Staveren H, Stevenson JW (1982) Using peephole
optimization on intermediate code. ACM Trans Program Lang Syst 4(1):21–
36
[CrossRef][MATH]

14. Click C, Cooper KD (1995) Combining analyses, combining optimizations.
ACM Trans Program Lang Syst 17(2):181–196
[CrossRef]

http://dx.doi.org/10.1145/24039.24041
http://www.emis.de/MATH-item?0623.68012
http://dx.doi.org/10.1145/197405.197406
http://dx.doi.org/10.1145/349214.349233
http://dx.doi.org/10.1002/spe.1059
http://dx.doi.org/10.1145/357153.357155
http://www.emis.de/MATH-item?0479.68026
http://dx.doi.org/10.1145/201059.201061

(1)

© Springer International Publishing AG 2017

Des Watson, A Practical Approach to Compiler Construction, Undergraduate

Topics in Computer Science, DOI 10.1007/978-3-319-52789-5_8

8. Code Generation
Des Watson1

Department of Informatics, Sussex University,
Brighton, East Sussex, UK

Des Watson

Email: desw@sussex.ac.uk

The process of code generation takes the intermediate

representation generated by the front-end of the compiler,

with
or without any optimisation performed by the machine-

independent optimisation phase, and generates code for the

target machine. Writing a good code generator is not easy.

There is too much choice. There will be infinitely many ways

of translating a piece of intermediate code to target code

and there is no standard way of performing the translation.

The translation process can involve many different

algorithms, all interacting with each other in seemingly

unpredictable ways, and ensuring that the code produced is

of sufficiently high quality is something of a challenge.

However, if optimisation is not a central concern, the

generation of target code is not especially difficult. But a

good knowledge of the target architecture is needed to

design, implement and test the code generation phase. And

it is important to plan carefully in advance so that the code

mailto:desw@sussex.ac.uk

generator can be designed to make good use of the features

available on the target machine.

8.1 Target Machines
The overwhelming concern while developing a code

generator is the nature of the target machine. What are the

instructions it supports? What sort of data can it

manipulate? What are the memory addressing constraints?

Are there caches and if so, how big are they? Does it have

registers? If so, how many? Are there registers with special

functions? Is it a parallel machine? What is the nature of the

parallelism? Does it support multiple cores or are the

processors more loosely coupled? Does it support

instruction-level parallelism? Are there any other features

that could be useful for the generated code? But not all

target machines consist of real hardware. A compiler can of

course generate code for a virtual machine, implemented in

software. Similar questions can be asked about the nature of

the machine. But there may be additional flexibility. Can the

design of the virtual machine be changed? Dynamically?

There is a great deal of detail to worry about here. And

there is not yet any manageable way of using formal

techniques to represent this information and use it to

specify a code generator. Before worrying about these

complications, it is worth outlining some much simpler

techniques for rapid implementation.

A simple way to implement a code generator is to

translate each intermediate representation instruction, one

at a time, into target code. Context can largely be ignored

and this simplifies the translation process greatly. Code

generation then becomes an operation based on pattern

matching. There is a pattern for each IR instruction and the

translation into target code is modified according to the

actual arguments of the IR instruction. This results in non-

optimised code because only a limited account is taken of

the interaction of individual instructions.

It may also be possible to implement the compiler by

targeting a high-level language already implemented on the

target machine. For example in the early days of C++

compilers, several C++ implementations were produced by

generating C code which was subsequently compiled using

an existing C compiler. Compilation of C++ then became a

two-step process, using C as an intermediate

representation. This again is an approach that makes the

implementation process somewhat simpler.

Yet another approach completely avoids the writing of a

code generator. Instead, an interpreter for the intermediate

representation can be coded in any language already

available on the target machine. For example, DL’s IR is

very simple and developing an interpreter for this language

is a manageable software project. Many languages have

been implemented in this way. This approach will be re-

visited in Chap. 9.

However, there will always be a need for compilers that

directly and efficiently target specific real or virtual

machines and so it is important to examine some of the

issues in producing a code generator design.

8.1.1 Real Machines
In the early days of processor design, there was an

assumption that most of the programming would be done at

the machine/assembly code level. But as the use of high-

level languages increased rapidly, the design of processors

became more appropriate for compiler-generated code. In

particular, the instruction set became more regular so that,

for example, the instructions for all the arithmetic and

logical instructions shared a common format, resulting in

less need for code in the code generator to handle special

cases. The compiler writer is also helped by two other

processor features. The first is the widespread use of

simpler instruction sets and the second is that modern

processors often incorporate hardware features to support

the dynamic optimisation of executing code.

The processors available today vary hugely in terms of

functionality, speed, instruction set, memory, architecture,

data width and so on. Writing a compiler for some of these

processors could be astonishingly difficult, whereas other

processors are much kinder to the compiler writer.

Compiling software for a tiny embedded processor used in a

doorbell-style applications is radically different to

compilation for a powerful multicore processor used in a

general-purpose enterprise server. Compiling where there

are real-time constraints poses some interesting problems

too. There is no universal solution.

Plainly, processor complexity has increased steadily since

the days of the first computers. Moore’s law (the number of

transistors in an integrated circuit approximately doubles

every two years) implies processor speed increases too. But

recent trends have suggested that the increases in

processor complexity have primarily gone towards the

support for increased parallelism in processors, specifically

towards the increase in numbers of processor cores

available. This poses particular problems for the compiler

writers. The application programmers need code to exploit

the new highly parallel machines.

8.1.1.1 RISC and CISC

There is a useful classification of processors
into either

reduced instruction set computers (RISC) or complex

instruction set computers (CISC). Both types of processor

are used today.

The RISC processors have a simple instruction set and

each instruction runs fast because it can be completed in a

small
number of processor cycles. These are the load/store

architectures, where main memory is accessed by specific

load and store instructions (reading from memory to a

register and writing to memory from a register) and other

instructions do not access main memory. Instead, the

arguments for these instructions are held in machine

registers. Instruction lengths tend to be uniform.

The CISC processors are usually based on a larger

instruction set made up of more complex instructions

requiring more processor cycles for their execution. For

example, a single instruction may load two arguments from

main memory, perform some arithmetic operation on these

values and store the result in main memory. Complex

addressing modes are often supported.

The dividing line between these two computer types is

fuzzy. For example, a RISC may incorporate CISC-like

addressing modes. And one type is not inherently better

than the other. Performance depends on the application and

the compiler far more than on whether the code will run on

a RISC or a CISC.

As far as the compiler writer is concerned, the RISC is

probably the architecture of choice because the instruction

set is inherently simpler. However, CISC instruction sets

have been designed to include instructions specifically for

the support of high-level language constructs. For example,

there is often support for function call and return where the

instructions automatically perform the housekeeping

operations of manipulating the stack pointer, saving

registers and so on. This can simplify code generation, but it

makes it hard to implement an unconventional form of call

and return. Some instructions supported by CISCs are

difficult for the compiler to generate despite their obvious

application. For example, the VAX architecture supported

polynomial evaluation instructions using a pointer to a table

containing the polynomial coefficients and a register

containing the value of the independent variable [1].

Compiling an assignment statement evaluating a

polynomial into the compiler’s IR and then recognising in

the code generator that this particular sequence of IR

instructions can be implemented by one of these machine

instructions is not easy. These polynomial instructions were

doubtless directed towards the assembly language

programmer writing small library routines.

8.1.1.2 Data Types

For each of the data types supported by the language being

compiled, a target machine representation must be found.

Hopefully, for most of these data types, the processor

provides native support. For example a C int could be

mapped to a 32-bit integer on a processor providing a full

set of arithmetic instructions operating on these integers. In

many high-level languages there can be flexibility in the

implementation but other languages such as Java specify,

for example that integers are 32-bit 2’s complement

quantities. Sometimes the target machine may not have

direct support for the data type. For example, consider a C

implementation targeted to a small 8-bit processor. Is it

reasonable to limit a C int to 8 bits, resulting in integers in

the range −128 to 127? Or would it be better to make use

of library routines to perform the arithmetic so that 16- or

32-bit integers could be emulated? Both signed and

unsigned integer arithmetic may be required.

Similar considerations apply to floating point arithmetic.

Emulation of floating point arithmetic in software will result

in slow calculations but if the hardware lacks floating point

support and the language being implemented requires

floating point support, the use of emulation is essential.

Implementation of characters and strings should be

simple. Is the use of an 8-bit character set such as ASCII

sufficient or does the programming language have to

support Unicode characters? There are standard ways of

representing Unicode characters. Strings are usually stored

in a contiguous area of storage with an associated length

value or as a sequence of characters terminated by a null or

other terminating value. The language may define how

strings are to be represented or it may be an

implementation decision.

Some languages allow the manipulation of individual bits

explicitly (for example, the bit-fields of C) or implicitly (for

example, if the language supports sets). Boolean values

may be implemented as single bits. Mapping these bit

operations onto the target hardware can be done by using

logical operators, but some processors have machine

instructions allowing designated bits in a word to be

manipulated.

Machine memory address manipulation is almost

inevitably an aspect of the generated code. Do integers and

address values require the same amount of storage? How

are variables requiring extended storage areas (arrays,

structures, objects, etc.) accessed both as a whole and also

via their individual elements?

8.1.1.3 Addressing

Processors support a variety of addressing modes. For a

straightforward
implementation of most conventional

programming languages only basic addressing modes such

as direct (specify an address directly), indirect (the address

is held in a register) and indexed (the address is obtained by

adding the contents of a register to an explicit offset value)

are required. Processors over the years have supported a

huge variety of addressing modes, sometimes included on

the false assumption that they might be of help to the

compiler writer. Many of these fancy addressing modes are

really difficult to generate directly, and it may be better to

make use of them through optimisation phases late in the

code generation process such as peephole optimisation

described in Sect. 8.5.3.

Some addressing modes are designed to support

particular high-level language operations. For example,

autoincrement and autodecrement addressing are directed

towards array operations. The loop:

could make use of an autoincrement addressing mode by

generating code before the loop to load the address of the

element a[0] into a machine register (say r1) and then

within the loop including the machine instruction clr (r1)+

which sets the location pointed to by r1 to zero and

automatically increments the value in r1 to point to the next

element of a. This is an instruction with side-effects and it

may be difficult to generate directly during code generation.

Instead it is often handled if necessary by the peephole

optimiser.

CISCs usually support a large range of addressing modes,

some really useful for array access, for example, by

automatically multiplying index values by the size of each

array element. Stack-based addressing is sometimes

supported. This may be of limited utility for a conventional

programming language implementation.

8.1.2 Virtual Machines
Compilers
do not have to generate code for real machines.

Target languages can be designed without the constraints

faced by the hardware designer. Using a virtual machine as

a target can often simplify the implementation process. An

interpreter for the virtual machine may be written without

great effort. Furthermore, the target language can be

another high-level language. Several compiler projects have

used C as a target language and the task is completed by

using an existing C compiler to translate the generated C to

target machine code. Here, the compiler is translating from

one high-level language to another.

A well-known virtual machine associated with

programming
language implementation is the Java Virtual

Machine [2]. This is not just an intermediate representation

between front-end and back-end—it is a representation that

can be interpreted by fairly simple emulator software,

allowing Java programs to be run. This stack-based virtual

machine is independent of real hardware and it provides a

route towards target machine-independent compilation.

The use of virtual machines is an important aspect of

programming language implementation, providing a

mechanism to investigate novel processor designs, the

possibility of dynamic modification of the characteristics of

the virtual machine, support for multi-language systems,

supporting language portability
and so on.

8.2 Instruction Selection
The process
of instruction selection forms the core of code

generation. The aim is to take the IR generated by the front-

end and replace the IR instructions by functionally

equivalent target machine instructions. This phase of

compilation can be thought of as another compiler,

translating from a source language to a target language. But

this translation is inherently ambiguous. There are infinitely

many ways of generating target code. Obviously we want

the best code (whatever that may mean) but guaranteeing

optimality is essentially impossible. Good code may have to

do.

Instruction selection can be regarded as a process of

pattern matching. As already mentioned, a simple approach

to instruction selection is to replace each IR instruction by

corresponding target machine instructions. This works but

generates poor target code because contextual information

is ignored.

A widely used approach to instruction selection
is to first

transform the IR into a tree representation. At first sight,

this seems like a retrograde step because the IR has only

recently been generated from a tree. But this tree is at a

lower level than the tree generated by the syntax analyser.

The operations in the tree correspond to the types of

operations performed by target machine instructions. Also,

for each instruction of the target machine, there is a tree

rewriting rule. Each rule contains a tree pattern to be

matched (essentially describing the actions of the

instruction) and a replacement (essentially specifying where

the result of the instruction, if any, is placed). Given the low-

level tree generated from the IR and a set of tree rewriting

rules, one for each machine instruction, the aim is to cover

or tile the IR tree with these instruction tree patterns. Each

time a pattern is matched, the pattern in the tree is tagged

with the corresponding replacement in the rewriting rule,

the corresponding machine instruction is noted and this

process is repeated until all nodes in the IR tree have been

matched—it has been completely covered. Then a bottom-

up tree walk can be performed, emitting the matched

machine instructions as the tree traversal is done.

Fig. 8.1 Trees representing machine instructions

To illustrate the style of these trees, the tree rewriting

rules for some simple machine instructions can be seen in

Fig. 8.1. These three examples show tree rewriting rules,

indicating how the IR tree should be modified if the tree on

the right-hand side of each diagram is matched with a

subtree in the IR tree. In the first instruction, a constant

value in the tree can be replaced by a machine register

by emitting the instruction li (load immediate).

Similarly, in the second instruction, the tree can be replaced

by , emitting the instruction add (). And in

the third instruction, the matched tree is replaced by a

memory location m, emitting the instruction sw (store

register in the location whose address is found by adding

the contents of register to the offset value). The ind

node (indirection) causes the value returned by the subtree

below it to be used as an address and the contents of that

address are returned.

Clearly an algorithm is needed to control which

instruction trees are used and the order in which they

should be matched in the IR tree. This process of tiling the

tree
specifies the target machine instructions that will be

generated and the quality of the generated code will

depend on exactly how the tree is tiled. Furthermore, the

tiling algorithm has to terminate with all the tree being

consumed in the process. The instruction patterns have to

be chosen so that this is possible. If there are patterns

covering all possible single nodes then the tiling is

guaranteed to terminate. An appropriate algorithm is the

maximal munch algorithm (see [3] for the details). Other

algorithms are used too [4]. These algorithms are not

perfect in that they are not guaranteed to result in the best

tiling. One obvious issue is that no account is taken at this

stage of register allocation. It is assumed that there is an

unlimited number of registers (if that is what was assumed

when the IR was generated) and register allocation is

assumed to be performed after instruction selection. But

there is a two-way interaction here between register

allocation and instruction selection and so getting the code

perfect is not really feasible.

The tree patterns for RISC instructions are mostly small,

but the patterns tend to be much larger for CISC

instructions. For example, defining patterns for the complex

instructions supported by graphics processors may be

challenging. Therefore instruction selection for RISCs turns

out to be somewhat simpler. But in all cases the search

space can be huge. Trying to find a good tiling of the IR tree

can be a time-consuming task and so the matching and

optimisation algorithms should be chosen and implemented

carefully.

A closely related approach to instruction selection is to

achieve the pattern matching by running a parser on a

flattened version of the IR tree produced by running a pre-

order traversal. A LR parser is used to match the patterns

with the flattened tree input and target machine code can

be emitted as the matching succeeds. This looks very much

like the syntax analyser of a compiler, but the key difference

is that this matching is inherently ambiguous. The

parsing/pattern matching has to be supported by algorithms

removing the ambiguity by attempting to minimise the cost

of the generated code. This form of instruction selection has

been used in various compilers with some success
.

8.3 Register Allocation
It is likely
that the target machine for which code is being

generated has registers. Details are processor-dependent,

but registers are fundamentally important to the process of

code generation for two reasons. The first is that machine

operations using values held in registers are almost

certainly much faster than if the values were held in main

memory. Second, the machine architecture design may

require that the arguments for particular instructions, such

as arithmetic or logical instructions, must be specified as

registers. So the arguments must be explicitly loaded into

registers before the particular instruction is executed.

Consider the compilation of the assignment statement a

= b + c (where the variables a, b and c are held in storage

locations named a, b and c) for various styles of target

machine. If the machine supports arithmetic instructions

taking three address arguments, one for the result and two

for the two operands, then this assignment could result in

an instruction of the form:

to be generated. Few machines support this form of

instruction. Here, registers are irrelevant or not very

important. One is much more likely to find arithmetic

instructions requiring at most one of the arguments to be in

main memory and the other or others
in registers (register-

memory machines).

To do the computation, r1 has to be used to hold the

value of b temporarily. Another machine architecture may

require that the add instruction has two
arguments, both

being in registers (register–register machines).

Here, two registers (r1 and r2) are required for the

computation. These machines may use three-operand

instructions:

Here, r1 is not overwritten with the result of the addition.

Registers are a precious resource and have to be used

carefully to enable concise and efficient code to be

produced. The process of register allocation is responsible

for taking the references to values in variables, temporaries,

arguments and so on in the intermediate representation and

making sure that they are held in registers wherever

possible in a way that attempts to maximise the efficiency

of the generated code. The aim is to keep all the frequently

accessed data in registers.

The intermediate representation being used as the input

to the register allocator could be designed so that it does

not use any registers. Instead it refers to variables and other

values by using symbolic names and it is a task for the code

generator to map these variables and values to hardware

registers and memory locations. It is more likely that the

program’s intermediate representation has been designed

such that it already makes use of registers called virtual

registers and no limit has been applied to the number of

registers being used. This may be a low-level intermediate

representation, produced by the instruction selection phase,

and the instructions will be close in structure to the actual

target machine instructions. The IR registers have to be

mapped onto the set of real hardware registers available.

The set of registers available is likely to be a subset of the

actual hardware registers on the processor because some of

the registers may be dedicated to other tasks such as stack

pointers, storage of particular constant values and so on.

Some registers may be dedicated for use with specific

instructions. Furthermore, it may be that the processor may

implement register classes, for example a set of registers

for floating-point operations and another set for general

integer purposes.

Ideally, we would like to be able to map all virtual

registers to distinct physical registers. However it is certain,

except for the simplest of source programs, that there will

be many more virtual registers than physical registers and

so the use of the physical registers
will have to be shared.

This can be achieved by register spilling. The contents of a

register are saved to main memory and the register can

then be used for another purpose. The saved register

contents can be returned to a register at a later point in the

execution of the program. Clearly, spilling should be avoided

if at all possible because it can be a costly operation

especially if it is executed many times in the code of a loop.

Register allocation is a complicated task, ideally needing

information about the runtime behaviour of the program so

that execution counts for each instruction can be predicted

to determine the optimal allocation. This is not in general

possible so heuristic approaches have to be used.

A useful starting point is to consider register allocation

within a basic block. Consider a self-contained basic block

requiring no registers for passing values into or out of the

block. There is a predefined number of hardware registers

available for use in the code in the block. One or two of

these registers will be needed for the spilling code but the

remainder can be allocated to the most frequently

referenced virtual registers. If the allocation process

concentrates first on those basic blocks within nested loops

(this is the code likely to be executed most often) then there

is a chance of a reasonably effective register allocation.

However, the register allocation problem for real

programs is made more awkward by the need for dealing

with programs made up of many basic blocks, with values in

registers being passed between them. To help towards a

solution to this problem the concept of liveness is

introduced.

8.3.1 Live Ranges
The live range
of a variable starts at its definition (i.e. when

it is first initialised) and ends with its last use. If a variable is

redefined (i.e. it has a new value assigned to it) a new live

range is started.

Consider this code. There are no other references to x or

y outside the live ranges shown.

In this code example, the two live ranges do not overlap.

Therefore the generated code can use the same register for

both x and y. Suppose that the references to y in this

example were changed to references to x, there would still

be two live ranges which are non-overlapping so that again

just a single register is needed. Static single assignment

(SSA) form makes this analysis a little more explicit. In SSA

form, variables can only be assigned to once, marking the

start of a live range, and the subscripting of variable names

makes an explicit connection between a use of a variable

and its definition.

It is live ranges rather than variables that are central to

the register allocation problem. Finding live ranges in

straight-line code is trivial, but when the control flow is more

complex the analysis becomes very much more difficult.

Further information about appropriate algorithms is

contained in the references in Sect. 8.7.

8.3.2 Graph Colouring
The analysis
of live ranges can be used to form the basis of

register allocation. Each virtual register in the code being

analysed has to be allocated to a physical register but there

are likely to be many more virtual registers than physical

registers. The register allocation analysis requires the

construction of a register interference graph, where the

nodes
are the virtual registers and an edge between two

nodes indicates that the two virtual registers have

overlapping live ranges where one of the virtual registers is

live at the point at which the other is defined. If live ranges

overlap, the virtual registers cannot share the same physical

register.

After the interference graph has been constructed, the

allocation problem becomes one of colouring the nodes of

the graph so that no two connected nodes share the same

colour. If the graph can be coloured using n different colours

and there are n or more physical registers available, the

allocation problem succeeds. A colour represents a

particular physical register. This is the graph colouring

problem, a well-known problem of graph theory, arising

originally from colouring maps so that countries sharing a

boundary have different colours.

A very simple example is shown in Fig. 8.2. The live

ranges for the three variables a, b and c are marked on the

code on the left. Live range a overlaps with both live ranges

b and c, and there is no overlap between live ranges b and

c. This information allows the register interference graph on

the right to be drawn. This graph can be coloured using just

two colours (white for node a and grey for nodes b and c).

So two physical registers are required, b and c can share a

register.

Fig. 8.2 Live ranges and register interference graph

Unfortunately, graph colouring is an NP-complete

problem (no polynomial-time solutions are known) and

exhaustive search for minimum register solutions is not

practically feasible as the size of the interference graph

increases to that found from even average programs.

Heuristic approaches have to be adopted.

8.3.2.1 A Graph Colouring Algorithm

A popular algorithm that usually does a good job to colour a

register allocation graph uses a recursive process of

repeated graph simplification. This is an O(n) algorithm (n is

the number of nodes), a major improvement on the

exhaustive search implied by the NP-complete problem.

Suppose that there are k physical registers available.

Once the register allocation graph has been constructed,

the next step is to attempt to simplify it by repeatedly

removing nodes. Suppose that there is a node X in the

graph which has fewer than k neighbour nodes. Remove X

from the graph. If it is then found that the resultant graph is

colourable using k colours, then the whole graph with X

replaced must also be colourable using k colours. This is

because in the graph with X missing, X’s neighbours must

have been coloured with colours and so there is one

or more colours available to colour node X.

The algorithm therefore repeatedly removes nodes with

fewer than k neighbours, adding the identity of the node

removed to a stack. At each step the graph is simplified by

the removal of a node and its connection links. If this

process continues until the last node is removed from the

graph, then the graph is colourable using k colours and the

register allocation succeeds. The graph can then be

reconstructed by returning nodes one by one from the

stack, each time colouring the node with a colour distinct

from any of its neighbours already replaced in the graph.

To show how this part of the algorithm works consider the

register interference graph shown in the first diagram in

Fig. 8.3. Suppose that there are four physical registers

available. Is it possible to allocate these six virtual registers

a, b, c, d, e and f to r1, r2, r3 and r4 without the need for

any register spilling? The graph colouring algorithm

proceeds as shown in Fig. 8.3.

Fig. 8.3 Graph colouring algorithm

At each step a node with fewer than k neighbours (k is

4 in this example) is chosen and temporarily removed from

the graph. The example here arbitrarily chooses node e as

the first to go (it has two neighbours) and e is put on the

stack and the new graph is shown in the second picture.

Then, nodes f, a, b and c are removed in turn, leaving the

last node d to go at the final step, emptying the graph.

The graph can then be reconstructed in reverse order

according to the data held on the stack and physical

registers allocated as shown in Fig. 8.4.

Fig. 8.4 Graph colouring algorithm—register allocation

Node d is first replaced. At this stage d has no

connections and so there are no constraints on which

physical register (colour) it can be allocated to. Allocate it to

r1. When node c is replaced it has a connection to node d

and so has to be allocated to a physical register (colour)

that is not r1. Choose r2. Node b and a are returned,

allocated to r3 and r4 respectively. When node f is returned

it has to be allocated to a physical register that is not r1 or

r2. Choose r3. Finally e is returned, allocated to r2. All

nodes have been coloured. The allocation process is

complete.

This algorithm seems to work very well. However it must

be enhanced to allow it to deal with the situation where

there are no nodes in the graph which have fewer than k

neighbour nodes. This implies that the algorithm has failed

to find an allocation of virtual to physical registers. For

example, consider the graph in Fig. 8.3 but with just 3

physical registers instead of 4. Both steps 1 and 2 can be

performed as before, removing nodes e and f, both having

just two connections, but then nodes a, b, c and d all have

three connections and the allocation process cannot

continue. In order to resolve this problem, one or more

physical registers have to be spilled. In other words the

virtual register has to be stored in main memory instead of

being placed in a physical register throughout its live range.

This is modelled in the graph colouring process by removing

the node corresponding to the spilled value. This should free

up other nodes, reducing their connection count, allowing

the allocation process to continue. Choosing a virtual

register to be spilled really needs information about

estimated execution frequency. Ideally only the infrequently-

used values should be considered for spilling
.

8.3.3 Complications
Achieving a high-quality register allocation is essential if

well-optimised code is to be produced by the compiler. The

underlying algorithms may be clear, but there are many

irritating complications, usually introduced by particular

language statements or statement types.

For example, after a simple assignment of the form x =

y both x and y are live. But they do not necessarily need to

have separate registers. It may be possible for them to

share a register because they contain the same value. This

is good news because registers are precious commodities.

Another issue concerns aliasing, illustrated well
by C’s

indirection operator *. If p is declared as int *p;, then a

statement of the form *p = 3; can play havoc with register

allocation. Where does p point to? If a static analysis of the

code can determine that it is definitely pointing to variable i

then the storage location associated with i can be updated

to contain the value 3. If i is currently held in a register,

then that register has to be updated to contain the value 3.

But it is more likely that the compiler cannot determine

where p is pointing and if so, it may then be necessary to

generate code to store 3 in the location pointed to by p and

somehow invalidate or reload all other registers containing

variables. This may cause havoc with the register allocation

process and may have significant runtime costs
.

8.3.4 Application to DL’s Intermediate
Representation
DL’s intermediate representation (see Sect. 6.​5) uses three

register types. Globally declared variables are called vg0,

vg1, ..., locally declared variables are called vl0, vl1, ... and

temporary values are placed in virtual registers r0, r1,

As far as register allocation is concerned, these three types

can be treated identically. But there is one small difference

in that the virtual registers r0, r1, ... have no associated

main memory storage. They have no home location. So if

one of these virtual registers is stored in a physical register

and that register needs to be spilled, there is no

automatically available main memory location for that

register’s storage. During code generation some runtime

storage has to be set aside for the purpose. Storage for all

the vg0, vg1, ..., vl0, vl1, ... registers is easily allocated on

a runtime stack as described in Sect. 8.4. Space for spilling

any of r0, r1, ... should it be required can be allocated there

too.

8.4 Function Call and Stack Management
The approach to DL’s runtime storage allocation
described

in Sect. 6.​2.​3 can be carried forward with little change to

suit most target machine implementations. A stack is used

for variable storage, local variables being accessed via the

register sp and global variables via gp. Addressing variables

is simple. Consider a possible state for the runtime stack for

the program outlined in Sect. 6.​2.​3:

This diagram clearly shows how different types of

variables can be accessed in DL.

8.4.1 DL Implementation
Generating target machine code to access the variables

should be easy. For example, if an IR instruction references

vg1, the code generator produces code to access the

storage location whose address is the contents of the gp

register plus 1, expressed in target code using indexed

addressing as 1(gp) or equivalent. Similarly, vg34 would be

accessed as 34(gp), and so on. A reference to vl1 would be

expressed as 1(sp).

Function call and return also have to be implemented.

This is where the design of the contents of the linkage

information
stored on the stack become relevant. The key

purpose of this information is to enable the execution

environment to be restored to what it was at the point of the

function call. This
means that the linkage information has to

contain a return address (the address of the instruction

following the call to the function) and also the value of the

old stack pointer at the point
of the call. These two values

are stored by code generated with the function call and on

return the old stack pointer is reinstated and control is

passed to the stored return address. These stack pointers

form a chain pointing down the stack. This is the dynamic

chain, dynamic because
the chain reflects the pattern of

function calls and returns as the program executes.

Recursive functions need no special treatment in this

scheme.

The runtime stack, in greater detail, showing the

dynamic chain, has the form:

The old stack pointer (osp) and the return address (RA)

are accessed via negative offsets from the stack pointer.

The return address and old stack pointer fields in the global

stack frame are not needed in this implementation.

DL also requires storage for the temporary

variables/registers r0, r1, Depending on how the register

allocation process performs, some of these registers will

almost certainly require storage space. These variables are

all local to the function (or the main program) and hence

they can be stored on the stack beyond the other named

local variables. The code generator has to keep track of the

offsets of these temporary variables so that their “r” names

can be mapped to offsets off the current stack pointer.

DL is a simple language where variables are either local

or global and so just two stack pointers are required to

locate all variables. There are languages, Pascal
is a good

example, where a more complex implementation is

required. In these languages, procedures (or functions) can

be defined within procedures. For example, if a procedure p2

is defined within a procedure p1 which in turn is defined in

the main program, p1 has access to its local variables as

well as the global variables defined in the main program.

And when p2 is active, it too has access to its local

variables, p1’s local variables as well as the global variables.

In this example, p1 has no access to p2’s local variables.

Complexity is somewhat increased when these procedures

can call themselves recursively. At any time in the

program’s execution there is a list of procedure activations

whose local variables are accessible by the running code.

This is not the dynamic chain. A separate chain is required

reflecting the static nesting of the procedure definitions.

This static chain has to be updated
as calls and returns are

performed to ensure that the stack frames linked together

by this chain identify the sets of accessible local variables.

The static chain stored in the stack can be considered as a

chain of pointers to the stack frames containing active

variables. In other words it is a set of stack pointers. As the

static depth of procedure nesting increases the number of

active stack pointer registers has to increase too.

Implementation is not difficult, but the management of the

static chain introduces a small overhead to the call and

return code.

8.4.2 Call and Return Implementation
Having decided on how the stack frame
mechanism should

work and how variables should be accessed, the next step is

to design the details of the code to be generated to perform

the function call, to initialise the function and to perform the

return to the caller. It may be easy to decide what should

happen and hence what code should be executed on a

function call, but it may be harder to decide how those

operations should be split between the site of the call and

the start of the function. Some operations can be performed

at either location and for these it is better to perform them

at the start of the function. This is to minimise code size

because repeating the code at each call results in larger

code.

Consider first what happens at a function call. What from

the caller’s environment has to be saved? Clearly a return

address has to be saved on the stack so that once the called

function has completed its work, control can be transferred

to the instruction immediately following the call. The current

stack pointer has to be stored too so that it can be

reinstated on return. The call also has to create a new stack

frame for the called environment. In other words, the stack

pointer has to be moved up the stack to the first free

location following the current local variables. In DL the code

generator will know the size of the current stack frame

enabling this value to be added to the stack pointer, ready

for the local variables of the called function.

Function return is a little simpler. All that has to be done

is to restore the stack pointer by loading the stack pointer

register from the old stack pointer value stored on the stack

and to jump to the return address, also stored on the stack.

How can all this be implemented on the target machine?

Which machine instructions should be generated? This

naturally depends on what’s available. Some machines

support special instructions to perform some aspects of

these call and return actions automatically, maybe a special

call instruction to save the stack pointer and return

address in particular registers and then branch to the

specified destination address. The use of dedicated registers

may help speed up and simplify the call code but dedicating

registers for this purpose may result in costs elsewhere. At

the very least there should be machine support for a call

instruction that saves the return address in a register. This

can then be saved on the stack with the current stack

pointer using instructions with indexed addressing. There

should also be some form of return instruction to pick up a

destination address stored in the stack, or in a register

loaded by another instruction, and jump to that address.

Selecting these instructions for best performance is

important. Space and time efficient calls and returns can

make a large difference to overall code efficiency.

8.4.2.1 Argument Passing

On a function call, in addition to the actions described

above, any arguments to the function have to be dealt with.

In the case of DL, the principle is easy.

In this example, the local variables a and b in myfunc

have to be initialised during the call with the actual

parameters 3 and 4. So code has to be generated to

evaluate the actual parameters immediately before the call

and store the values at offsets 0 and 1 in the new stack

frame being created for myfunc. The parameters could, of

course, be passed in machine registers as well, or instead.

This form of argument
passing is known as call by value.

It is the values of the arguments to which the called function

has access. The called function has local copies of the

arguments. If myfunc had been called using the statement i

= myfunc(p,q); then myfunc cannot directly update the

variables p and q in the caller’s environment. Many

programming languages, including C, use this form of

argument passing.

Some languages
support call by reference where it is the

address of the actual argument that is passed so that in the

example above, the addresses of p and q are passed into

myfunc, allowing the code in myfunc full (read and write)

access to the variables p and q in the caller’s environment.

This makes no sense for calls of the form myfunc(1,2) or

myfunc(p+q,p-q) and appropriate error messages should

be generated in these cases.

Other argument passing styles are occasionally used

such as call by value-result or call by name. The

implementation should obviously support whatever it is that

is required.

8.5 Optimisation
Chapter 7 covered techniques
for code optimisation at the

intermediate representation stage of compilation, using

techniques that are independent of the design of the target

machine. Optimisation within and after the code generation

phase is based on target machine-dependent techniques.

This is where a detailed knowledge of the target machine is

especially important.

There is considerable scope for optimisation at this

stage. Modern processor hardware is often extremely

complex and optimisation is no longer centred around the

minimisation of the number of instructions. In order to

optimise for speed, other considerations such as instruction

scheduling, the use of parallel execution, the effective use

of caches and so on may be much more important. Rules for

the effective use of these machine characteristics can be

coded into the code generation process. However, the

complexity of this task should not be underestimated.

This section provides a brief overview of some of the

issues involved in machine-dependent optimisation. As

hardware is developed, new challenges appear for the

compiler writer.

8.5.1 Instruction-Level Parallelism
Over many years of processor development
, the primary

source of performance improvement has been the steady

increase in clock speeds. But as physical constraints are

preventing unlimited clock speed increases, the introduction

of parallelism is becoming increasingly important. In Sect. 7.​

4 the high level aspects of parallelism were introduced. But

performance improvements can also come from parallelism

at a very much lower level, within the execution of

individual instructions. For the compiler writer this means

that instruction order can affect execution speed. The

compiler should schedule instructions to make best use of

the instruction parallelism offered by the hardware.

This task is handled by the instruction scheduler. It takes

target
machine code as input and it produces code where

the instructions are reordered to make best use of the

processor’s instruction-level parallelism. It must, of course,

maintain the semantics of the code. Instruction scheduling

is not relevant to all processors. Also superscalar processors

can perform out-of-order instruction execution automatically.

Here, the processor looks ahead in the instruction stream,

dynamically as the program runs, selecting multiple

instructions that can be initiated simultaneously in the same

processor cycle, allowing instructions or operations within

instructions to execute in parallel. However the code for

many processors can benefit from the use of an instruction

scheduling pass, performed statically by the compiler.

By duplicating hardware, processors can support

simultaneous execution of multiple instruction streams.

Another parallelism
model makes use of an instruction

pipeline. Here, the execution of an instruction is broken

down into several small steps (e.g. instruction fetch,

instruction decode, perform operation, store result) and

these steps taken from multiple instructions can be

interleaved so that multiple instructions seem to be

executing in parallel. This pipeline may not be able to run

smoothly and may stall because, for example, an instruction

may want to use the result from an immediately preceding

instruction and therefore has to wait until the first

instruction has completed. Jump instructions also cause

problems. Therefore, instruction scheduling is important to

pipelined architectures to minimise the proportion of

instructions causing pipeline stalls.

The instruction scheduler has to examine the

dependencies between instructions and determine how

many clock cycles are required to resolve each of the

dependencies. There are clear parallels here with the ideas

of data dependence introduced in the last chapter. For

example, consider a simple pipelined machine with a two-

stage pipeline so that each instruction executes in two clock

cycles. Suppose that the first pipeline slot fetches and

executes the instruction and the second slot stores the

result. Consider the simple instruction sequence:

This would be executed as follows.

Time slot 1—instruction 1 starts.

Time slot 2—instruction 2 starts, instruction 1 completes

and r1 loaded.

Time slot 3—instruction 3 cannot start because r2 is not

yet loaded. Introduce a delay slot and do nothing.

Time slot 4—instruction 2 completes and r2 loaded,

instruction 3 starts.

Time slot 5—instruction 3 completes and r3 loaded.

There are dependencies from instruction 1 to instruction

3 and from instruction 2 to instruction 3. In other words,

instruction 3 cannot be scheduled for execution until both

instructions 1 and 2 have completed. There is not much that

the instruction scheduler can do in this case—changing the

order of instructions 1 and 2 is possible but would offer no

benefit. The one delay slot is inevitable.

A directed acyclic graph (DAG) can be used to illustrate

these dependencies. The graph from the example above is:

The graph from a more interesting example is:

Here, an optimal schedule is 4, 1, 2, 5, 3. There are no

additional delay slots needed.

The DAG can be generalised to deal with more complex

delay patterns by labelling each arc with the number of time

slots before the result becomes available. In the situation

described above, all arcs would be labelled with a “1”.

Performing the scheduling is another NP-complete

problem, so a heuristic approach has to be used. Many

different algorithms capable of producing good results exist

and are often based on list scheduling [4–6].

Note that there is a complex interaction between register

allocation and instruction scheduling. A simple example is

shown in the compilation of the code a=1; b=2; c=3;. The

code after register allocation may have the form:

and scheduling these instructions might well involve the

introduction of several delay slots. There is a dependence

from instruction 1 to instruction 2 and then an

antidependence from instruction 2 to instruction 3.

Removing this antidependence can be done by making use

of more registers:

Here, instruction scheduling will be more successful. But

the use of more registers may not always be possible. This

inevitably raises difficult questions about the order in which

register allocation and instruction scheduling is performed.

Unfortunately there is no universal and guaranteed answer
.

8.5.2 Other Hardware Features

There comes a time in the development of a compiler when

it is sensible to examine carefully the hardware

characteristics of the processor and to ask how these

features could be used effectively by the compiler to

produce high-quality code. Some of these features will be

common to a wide range of processors while others will be

very processor-specific. And these features will have to be

used in such a way as to support the aims of the compiler. Is

the compiler optimising for target code speed, or size, or

power consumption, or something else, or a combination?

It may be helpful to look at a few machine features and

consider how they might be used.

8.5.2.1 Special-Purpose Instructions

The processor may support some special instructions,

maybe designed for particular applications or high-level

language constructs. For example, function or subroutine

call and return instructions may be available and it is likely

that the use of these instructions by the compiler may result

in better code. However there may be a tradeoff. Perhaps

the machine instructions do not quite match the function

call mechanism already designed for the language and its

compiler. Is it worth redesigning to suit the hardware or is it

better to make the use of the fancy instructions suit the

design by adding further code? Or is it better to avoid the

use of the fancy instructions completely?

At some point it is sensible to look through the whole

instruction set of the target machine to ensure that all

instructions have been considered for use. Are there

instructions designed to perform some special-purpose

computation that could be generated by the compiler? This

is more likely to occur with CISC
architectures. For example,

should the polynomial evaluation instruction be generated

by a compiler (see Sect. 8.1.1.1)? There is obviously no

need to be able to generate all instructions but there may

be cases where the code can be improved by the sensible

use of these special-purpose instructions.

These special-purpose instructions can be generated by

the code generator explicitly detecting the special cases.

They can also be generated semi-automatically by some of

the techniques used for automated code generator

construction (see Sect. 8.6). Also a peephole optimiser
(see

Sect. 8.5.3) can include rules for their generation.

Almost all modern computer systems, apart from the

smallest of embedded systems, include some form of

parallel execution. The ideas of parallelisation have already

been discussed as optimisation at the IR level, independent

of the target machine. Finding independent processes to

schedule on homogeneous or heterogeneous sets of

processors is something best done before code generation.

But there are code generation issues involved here too. Are

there special instructions or system calls for managing the

multiple processes and processors. How is the operating

system involved?

This issue is further complicated by the fact that code

may need to be generated for more than one processor

architecture. For example, it may be possible for the

compiler to generate code for the graphics processing unit

(GPU) of a computer system. The architecture of the GPU

will offer highly parallel computation, maybe with a huge

number of individual parallel processing elements and it is

well suited to array manipulation [7]. Furthermore, the GPU

computation may be able to proceed in parallel with the

conventional processor.

8.5.2.2 Types of Memory

Computer systems provide memory with a wide range of

speeds and characteristics. There is a memory hierarchy.

Processors have a
small number of very fast registers,

maybe cache memory
, then main memory and finally disc,

external or network storage. The average programmer will

have little direct control of how the registers, cache and

main memory are used during the execution of a program

but the compiler writer has much greater control. Good

register allocation can make a great deal of difference to

program efficiency. Similarly, effective use of the cache (or

separate instruction and data caches) can improve

performance a great deal. Caches effectively act as high-

speed memories interfacing between the very fast

processor and the much slower main memory. It makes

sense to attempt to keep as much of the frequently

accessed instructions and data in the cache and the

compiler may have some control over this.

A good knowledge of how the cache works on the target

machine is of course essential. Consider a short program

loop. The first time this loop is executed the code is loaded

from main memory into the cache and then executed from

there. The next and subsequent times the loop is executed

there is no need for the cache to be reloaded. Because the

loop is small it fits completely in the cache and execution is

fast. Similar considerations apply to data. A block of data

from contiguous locations in main memory is loaded into the

cache, making subsequent access to all that data very fast.

The compiler can have some control over program and data

locality of reference. For example, it may be possible to split

a loop into two separate loops, one executed after the other,

in order to get the loop to fit in the cache. Data cache

operation is particularly relevant to array manipulation.

Consider the two fragments of C code:

Because C multi-dimensional arrays are stored so that

the rightmost subscript varies most rapidly as successive

storage locations are accessed, the code on the left has

greater data locality in accessing array a. More data will be

found in the cache and so the code on the left will probably

run more quickly than the code on the right. The compiler

should be aware of this issue and automatically modify this

sort of code
.

Similar considerations may apply at a different point in

the memory hierarchy, in the interface between main

memory and the virtual memory system. The performance

of the virtual memory system may be affected by the

locality of data access. For example, large arrays too big to

fit in main memory so are partially held in virtual memory

on external storage, may be accessed very much more

slowly if data access occurs at widely scattered locations.

The compiler may have a role to play here too.

8.5.3 Peephole Optimisation
Code optimisation in a compiler can take place
at the

intermediate representation stage and throughout the code

generation. Additionally, there are some optimisations that

are best applied at a late stage of compilation, once target

code has been generated. One such optimisation is called

peephole optimisation, it is simple to implement and it can

be very effective [8].

This optimisation scans through the generated code

looking for instances of machine instructions that can be

replaced by more efficient instructions (machine idioms). For

example, a machine instruction of the form add 1,r2 could

be replaced with the instruction inc r2 possibly saving

execution time and program memory. The patterns can

cover multiple instructions too. So for example instruction

pairs of the form store r1,address immediately followed

by load r1,address can be transformed to simply

store r1,address.

The action here is simple. The generated code is scanned

using a set of patterns and corresponding replacements.

This optimiser examines short sequences of target machine

instructions, through a peephole. It replaces single

instructions or groups of instructions by sequences that are

shorter or execute faster. The process of passing the

peephole over the machine code is repeated until no further

improvement to the code is made.

The peephole optimiser is capable of performing a wide

range of optimisations. Redundant instructions can be

removed. For example, adding zero to a register can

probably be removed, assuming that subsequent

instructions are not relying on the setting of the condition

code. Expensive instructions can be replaced by cheaper

instructions, for example replacing multiplication by a power

of two by a shift, replacing jump instructions having another

jump instruction as their target by a single jump, generating

a powerful CISC instruction from a sequence of simpler

instructions and so on.

Generating the set of patterns to be matched is central

to the success of this technique. One can adopt an obvious

hand-generation approach of examining examples of

generated code to find substitutions, add these to the table

of patterns, and repeat until satisfied. Automated

approaches have been used too. Exhaustively searching all

possible single instructions, pairs of instructions and so on

and determining whether there is a better replacement is an

attractive approach [9]. Separating the code for performing

the matching and replacement from the data defining the

target architecture patterns is a good approach [10].

More systematic approaches are possible too. It is

possible to convert the input machine code into some very

low-level intermediate representation, match that with the

same form of low-level intermediate representations of the

target machine instructions and produce an output stream

of machine code. And this can form the basis of a complete

instruction selection process where the compiler’s IR is

translated into this low-level intermediate representation.

Peephole
optimisation has also been used successfully on

intermediate representations [11].

8.5.4 Superoptimisation
An important
and interesting question is whether it is

possible to determine whether a piece of code can be

optimised more. Is it the best possible according to some

pre-specified criteria? Is it possible to find the best code for

a particular algorithm? The answer is a tentative and

qualified “yes”.

A tool called the superoptimizer [12] was developed to at

least partially answer these questions. A simple C function

was defined and an exhaustive search for short machine

code sequences semantically equivalent to the original C

code was performed. Semantic equivalence was assessed

by automatically testing with various inputs and finally using

hand-verification. This approach produced the “best” code

for the chosen C function and, interestingly, it is shorter

than that produced by various C compilers or by

experienced assembly language programmers.

Unfortunately, because of the use of exhaustive search,

this approach is not feasible for code sequences of more

than a handful of machine instructions. Many instructions

and addressing modes together with other hardware

complexities make an enormous number of possibilities to

try. Inevitably, there are also issues concerning the

definition of “best”—how are these code fragments

evaluated? Measuring execution speed is difficult, especially

on architectures supporting caches, pipelines and so on. The

original work was done using the instruction count as the

optimisation metric. Despite its limitations, this approach is

useful in circumstances where short code sequences have

to be designed for subsequent generation by a compiler for

specific tasks such as the function call, performing
64-bit

arithmetic on a 32-bit machine, and so on.

8.6 Automating Code Generator
Construction
Good code generators are large and complex pieces of

software. Writing them is hard work. Writing lexical and

syntax analysers has been made much easier by the

availability of generator tools working from a formal syntax

specification. Can similar tools be developed for the

construction of code generators using machine

descriptions?

Several useful code generator generator tools have been

developed generally using the same approach of performing

pattern matching on intermediate representation trees or

data structures derived from trees. Use of these tools tends

not to be straightforward mainly because of the complexity

of constructing a large number of patterns defined by the

target hardware architecture. Furthermore, the inevitable

ambiguity in these patterns has to be handled appropriately

so that a pattern match resulting in near-optimal code is

generated. One-off code generators are usually written by

hand, but code generator generators become particularly

useful when a front-end has to be retargeted to multiple

target machines.

One way to think about the operation of a code generator

generator is to consider using a peephole optimiser on the

intermediate representation, transforming sequences of IR

instructions into target machine instructions. Using a simple

“search and replace” pattern matcher is feasible, but the

generated code will be disappointing and there is a danger

that all the input will not be matched. The extreme case is

to have a set of patterns, one for each IR instruction, so that

each IR instruction is translated in isolation into a sequence

of target machine instructions. This will work, but will

generate very poor code.

There are several ways in which this process of

translating a sequence of intermediate instructions into

target machine instructions can be formalised. An early

approach, called the Graham-Glanville approach, was based

on the idea of parsing using a context-free grammar [13]. A

set of context-free rules is used to perform matching on the

intermediate representation and on each match appropriate

target machine code can be output. The code generator is

being implemented as an LR(1) parser. But there are

complications. There is inherent ambiguity in this process so

steps have to be taken for the parser to deal with this

ambiguity.

Other approaches use an attribute grammar approach to

the specification of parsing and code generation rules.

Attributes add semantics to the rules [14–16]. Dynamic

programming can be used to resolve the ambiguity and a

system called twig was developed [17]. This system

performs pattern matching on the parse tree. A similar

system called BURS (Bottom-Up Rewrite Systems) was also

based on dynamic programming, improving performance by

generating table-driven code generation algorithms when

the code generator is constructed rather than when the

code generator runs [18]. Further developments produced

the BURG tool [19].

8.7 Conclusions and Further Reading
If quality code is not required, writing a code generator is

fairly easy. But writing a good code generator can be very,

very hard. The coding certainly requires an in-depth

knowledge of the target architecture so that detailed

processor manuals should be at hand. Careful planning is

definitely required.

The instruction selection phase of code generation has

been well studied and effective algorithms are widely

available. Appel [3] presents detailed algorithms for tree

pattern matching and introduces techniques for the use of

dynamic programming. Instruction selection is covered in

depth in [20].

Register allocation is also a well-researched area. Chaitin

[21] is the first work describing register allocation by graph

colouring and Chow [22] is another important reference.

Mogensen [23] provides a good overview of the process and

Muchnick [5] presents an in-depth study.

Managing function (or procedure, subprogram,

subroutine or method) call needs careful reading of the

language definition. Argument passing can be troublesome.

Call by value is a traditional approach where the argument

variable defined in the called function is initialised with the

value of the corresponding argument used in the call. This is

the approach adopted by C and many other languages and

it is usually easy to implement. Because addresses can be

manipulated by C programs, functions can update variables

in the caller’s environment by forcing the passing of the

address of a variable rather than its value. Sometimes this

passing of addresses is done in default (call by reference)

and the compiler may have to check that the actual

parameter used is a variable name rather than an

expression, single numerical value, etc.—it has to be

something that “has an address”. Some languages
offer

more complex argument passing mechanisms such as

ALGOL 60’s call by name [24]. It is worth looking at these

argument passing mechanisms in books on programming

language design or comparative programming languages.

For example, see [25]. Function call and return should be

implemented, if at all possible, to make the overhead really

small. If the user of the language discovers that call and

return are expensive, then functions may not be used nearly

as much as they should.

Looking at the documentation of real compilers can

provide an excellent insight into what compilers and

specifically code generators can do. Examining the nature of

the different code optimisation features available shows

how far this aspect of compiler design has advanced. Many

of these compilers allow the selective activation of different

optimisations, and it is interesting to examine the effect that

these individual optimisations
have on the target code. For

example, the GCC (GNU Compiler Collection) project has

extensive documentation, the compiler source code is

available, and it is used widely. It incorporates front-ends for

several high-level languages and has been targeted to a

very wide range of machines [26].

Instruction scheduling is another well-studied topic and

much has been published. Detailed information is available

in [5]. Many studies have also been made concerning the

combination of code generation tasks. For example, [27]

examines the effect of register allocation combined with

peephole optimisation and [6] covers instruction selection

and peephole optimisation.

Superoptimisation is not a mainstream optimisation

technique, but is useful for some specific smaller scale

tasks. The GNU Superoptimizer (used for the project

described in [28]) provides a good framework for

experimentation with the technique
.

Exercises

8.1 Which target machine addressing modes would you

find useful when designing a code generator for DL?

Produce a short list of generic machine instructions

that would be essential for DL. Are there additional

instructions that would be useful?

8.2 Design a “dream” processor to be the target of a C (or

any other language) compiler. Don’t feel constrained

too much by today’s hardware limitations. Write an

emulator for this processor.

8.3 Design a low-level tree for DL and generate a set of

tree patterns for a simple target machine. Try

generating code using tree pattern matching.

8.4 Write a register allocator, operating on DL’s

intermediate code.

8.5 Generate C code from DL’s intermediate

representation. This should give you a fast way of

producing a complete DL compiler.

8.6 Try writing a peephole optimiser for DL’s intermediate

code. Might it make sense to use some form of SSA-

based IR?

8.7 Sometimes the target machine will not provide native

support for some data types required by the source

language. For example, a small target processor may

have no floating point instructions. Consider how to

provide floating point operations in the target code.

The key issue here is not the code to do the operations

—instead it is the code needed to call or somehow

include the floating point code.

8.8 Design function call and return instructions for a

simple machine, appropriate for use by a DL compiler.

Do you need to dedicate some registers for specific

purposes?

8.9 Write a non-optimising code generator for DL targeting

a real or virtual machine of your choice. Now make it

optimise using a variety of machine-dependent

optimise using a variety of machine-dependent

techniques.

References
1. Payne M, Bhandarkar D (1980) VAX floating point: a solid foundation for

numerical computation. SIGARCH Comput Archit News 8(4):22–33
[CrossRef]

2. Lindholm T, Yellin F (1997) The Java virtual machine specification. The
Java series, Addison-Wesley, Reading

3. Appel AW (2004) Modern compiler implementation in C. Cambridge
University Press, Cambridge
[MATH]

4. Aho AV, Lam MS, Sethi R, Ullman JD (2007) Compilers – principles,
techniques and tools, 2nd edn. Pearson Education, Upper Saddle River
[MATH]

5. Muchnick SS (1997) Advanced compiler design and implementation.
Morgan Kaufmann Publishers, San Francisco

6. Cooper KD, Torczon L (2011) Engineering a compiler, 2nd edn. Morgan
Kaufmann, San Francisco
[MATH]

7. Mittal S, Vetter JS (2015) A survey of CPU-GPU heterogeneous computing
techniques. ACM Comput Surv 47(4):69:1–69:35
[CrossRef]

8. McKeeman WM (1965) Peephole optimization. Commun ACM 8(7):443–444
[CrossRef]

9. Davidson JW, Fraser CW (1984) Automatic generation of peephole
optimizations. In: Proceedings of the ACM SIGPLAN ’84 symposium on
compiler construction, Montreal, Canada, pp 111–116. Published as ACM
SIGPLAN Notices 19:6

10. Davidson JW, Fraser CW (1980) The design and application of a
retargetable peephole optimizer. ACM Trans Program Lang Syst 2(2):191–
202
[CrossRef]

11.
Tanenbaum AS, van Staveren H, Stevenson JW (1982) Using peephole
optimization on intermediate code. ACM Trans Program Lang Syst 4(1):21–

http://dx.doi.org/10.1145/641845.641849
http://www.emis.de/MATH-item?0888.68036
http://www.emis.de/MATH-item?1155.68020
http://www.emis.de/MATH-item?1058.68036
http://dx.doi.org/10.1145/2788396
http://dx.doi.org/10.1145/364995.365000
http://dx.doi.org/10.1145/357094.357098

36
[CrossRef][MATH]

12. Massalin H (1987) Superoptimizer – A look at the smallest program. In:
Proceedings of the second international conference on architectural
support for programming languages and operating systems (ASPLOS-II),
Palo Alto, California, pp 122–126. Published as ACM SIGPLAN Notices
22:10

13. Glanville RS, Graham SL (1978) A new method for compiler code
generation. In: Proceedings of the 5th annual symposium on principles of
programming languages, pp 231–240

14. Ganapathi M, Fischer CN (1982) Description-driven code generation using
attribute grammars. In: Proceedings of the 9th annual symposium on
principles of programming languages, Albuquerque, NM, pp 108–119

15. Ganapathi M, Fischer CN (1984) Attributed linear intermediate
representations for retargetable code generators. Softw Pract Exp
14(4):347–364
[CrossRef]

16. Ganapathi M, Fischer CN (1985) Affix grammar driven code generation.
ACM Trans Program Lang Syst 7(4):560–599
[CrossRef]

17. Aho AV, Ganapathi M, Tjiang SWK (1989) Code generation using tree
matching and dynamic programming. ACM Trans Program Lang Syst
11(4):491–516
[CrossRef]

18. Pelegri-Llopart E, Graham SL (1988) Optimal code generation for
expression trees: an application of BURS theory. In: Proceedings of the
15th annual symposium on principles of programming languages, pp 294–
308

19. Fraser CW, Henry RR, Proebsting TA (1992) BURG – fast optimal
instruction selection and tree parsing. ACM SIGPLAN Not 27(4):68–76
[CrossRef]

20. Blindell GH (2016) Instruction selection: principles, methods, and
applications. Springer, Switzerland
[CrossRef]

21. Chaitin GJ (1982) Register allocation and spilling via graph coloring. In:
Proceedings of the ACM SIGPLAN ’82 symposium on compiler
construction, Boston, Mass, pp 98–105. Published as ACM SIGPLAN
Notices 17:6

22.

http://dx.doi.org/10.1145/357153.357155
http://www.emis.de/MATH-item?0479.68026
http://dx.doi.org/10.1002/spe.4380140406
http://dx.doi.org/10.1145/4472.4486
http://dx.doi.org/10.1145/69558.75700
http://dx.doi.org/10.1145/131080.131089
http://dx.doi.org/10.1007/978-3-319-34019-7

Chow FC, Hennessy JL (1990) The priority-based coloring approach to
register allocation. ACM Trans Program Lang Syst 12(4):501–536
[CrossRef]

23. Mogensen TÆ (2011) Introduction to compiler design. Undergraduate
topics in computer science. Springer, Berlin

24. Naur P (1963) Revised report on the algorithmic language ALGOL 60.
Commun ACM 6(1):1–17
[MathSciNet][CrossRef][MATH]

25. Sethi R (1989) Programming languages – concepts and constructs.
Addison-Wesley Publishing Company, Reading
[MATH]

26. Free Software Foundation (2016) GCC, the GNU compiler collection.
https://​gcc.​gnu.​org/​

27. Davidson JW, Fraser CW (1984) Register allocation and exhaustive
peephole optimization. Softw Pract Exp 14(9):857–865
[CrossRef]

28. Granlund T, Kenner R (1992) Eliminating branches using a superoptimizer
and the GNU C compiler. In: Proceedings of the ACM SIGPLAN ’92
conference on programming language design and implementation. San
Francisco, California, pp 341–352, June 1992

http://dx.doi.org/10.1145/88616.88621
http://www.ams.org/mathscinet-getitem?mr=154442
http://dx.doi.org/10.1145/366193.366201
http://www.emis.de/MATH-item?0109.35105
http://www.emis.de/MATH-item?0734.68024
https://gcc.gnu.org/
http://dx.doi.org/10.1002/spe.4380140906

(1)

© Springer International Publishing AG 2017

Des Watson, A Practical Approach to Compiler Construction, Undergraduate

Topics in Computer Science, DOI 10.1007/978-3-319-52789-5_9

9. Implementation Issues
Des Watson1

Department of Informatics, Sussex University,
Brighton, East Sussex, UK

Des Watson

Email: desw@sussex.ac.uk

This book has concentrated on a traditional and intuitive

view of a compiler as a program to translate from a high-

level source language to a low-level target machine

language, with a potentially visible intermediate

representation between a front-end and a back-end. This

form of compiler is in essence specified by the source and

target languages and also by the language in which the

compiler should be coded. But this book has also stressed

that the view of a compiler as a single, monolithic piece of

code is not helpful. Instead, regarding it as a collection of

phases, at least by separating a front-end from a back-end,

is very helpful. These issues become particularly important

when considering a strategy for a programming language

implementation project.

9.1 Implementation Strategies

mailto:desw@sussex.ac.uk

Careful choice of a strategy, maybe by making use of

software already available, can greatly reduce the effort

required to produce a programming language

implementation.

Suppose that an implementation of a high-level language

called L is required for target machine M. The obvious way

of approaching this task is to code a complete compiler

reading in programs written in L and producing M’s machine

code as output. We will worry about implementation

languages and also on which machine the compiler is to be

implemented later in this chapter. We have already seen

that it makes sense to divide the task into two with a front-

end and a back-end, and the choice or design of an

intermediate representation is up to the implementer.

What else does the implementer need to know? Does the

generated code have to be highly optimised? Does the

compiler have to be particularly fast? Are there other

hardware or software constraints on the project? How long is

the project supposed to take? How many people are

available? For complex source languages and target

architectures, and to generate highly optimised code, the

project inevitably becomes huge, undoubtedly requiring a

sizeable programming team.

Fortunately, there are many ways in which the compiler

for L to M can be written with considerably less work. It may

be possible to make use of existing software. There are

many high-quality open-source compiler projects easily

accessible on the internet and these may be able to offer

code or complete programs or packages to help in the

project. Also various existing software tools may help in the

development process. Consider some examples of ways in

which the development process can be simplified:

It is obviously worth checking first whether a suitable L

to M compiler already exists. If not, is a front-end for L

available, generating some form of IR? Then the project

just involves the coding of a back-end for M. Similarly,

does an appropriate back-end for M exist whose input is

a suitable IR for L? Writing half a compiler is

considerably easier than writing a whole compiler.

If highly optimised code for M is not required, then it

may be possible to make considerable simplifications to

the coding of the back-end. A code generator can

translate the IR, statement-by-statement, into target

machine code, with little regard for context. Similarly,

code may also be generated directly from the tree

generated by the syntax analyser, node by node.

Writing this type of code generator is not too difficult.

The process can be further simplified by generating

assembly language rather than binary object code

modules (or equivalent) and then using the system’s

assembler on M to generate binary modules.

It may be possible to avoid completely the generation of

M’s machine or assembly code by generating target

code in a high-level language already implemented on

the target machine. For example, it may be possible for

the compiler for L to generate C code and that code

passed through an existing C compiler to produce the

target machine code for M. There are significant

potential advantages here. Not only is less work

involved (generating C from the IR is probably much

easier than generating target machine code) but also if

the C compiler optimises well, significant optimisation

efforts in generating the C may not be necessary.

A related approach is to avoid the need of a code

generator completely. The IR can be interpreted,

instruction by instruction. Writing an interpreter is likely

to be very much simpler than writing a code generator.

The obvious disadvantage is of course the difference in

execution efficiency, but there are many applications

where this would not be an issue. We re-examine this

issue in Sect. 9.1.3.

It always makes sense to use the right tools. Use a

sensible implementation language (see Sect. 9.1.2) and

make use of compiler-generating tools where

appropriate (see [1] for a comprehensive summary).

An important question here is whether the development

of the compiler has to be carried out on machine M. Does M

have a good range of software development tools already

available? Would it be better to develop the compiler on a

completely different machine, and then somehow transfer it

to M?

9.1.1 Cross-Compilation
The machine M may already provide a good software

development environment with appropriate
compilers,

debuggers, editors and so on, and the new language L is not

central to this development process (it has not yet been

implemented). In this case, developing the compiler on M is

perfectly sensible. However, it may be that M has limited

existing software infrastructure. It could have a newly

designed processor or its system software could lack the

features of a versatile operating system. Here, developing

the new compiler software on M would not be appropriate

and another existing machine, say , with full software

support and perhaps with a different architecture to M could

be used instead.

Making this work is not too difficult. The compiler for L is

developed on . It runs on but when this compiler is

given a program written in L as input, it generates machine

code for machine M. This generated code is transferred to

machine M where it can run natively on M’s hardware. This

process is called cross-compilation and it can have a

particularly important role to play in the implementation of

a language on a new machine.

This approach is used widely. For example, M could be a

small, embedded processor, lacking in software or hardware

support (no external secondary storage, restricted main

memory and so on), not sufficiently powerful to host a

compiler. Note that in this scheme two machines are being

used to run programs written in L. In Sect. 9.1.2 we will see

how this step of cross-compilation can be used to produce a

complete implementation of L on M but this of
course may

not always be the aim, particularly when M is a machine

with limited capabilities.

9.1.2 Implementation Languages
The choice of a programming language
in which to

implement a compiler is very important. The

implementation language should have several

characteristics:

Obviously, the language should already be available on

the machine on which the compiler is to be developed.

Implementing a compiler for one’s favourite

implementation language in order to write the compiler

actually required is rarely sensible.

Writing a compiler is a big project and so the

implementation language must support the manageable

development of big software projects, probably using a

team of programmers. This rules out low-level

languages.

The language should offer good support for the types of

computation performed by the compiler such as

character handling, data structure management and so

on. Pattern matching is a potentially useful feature.

If compiler generation tools are being used they may

influence or indeed force the choice of a particular

language.

Ideally, the language should have an efficient

implementation. This will help with the production of an

efficient compiler.

The implementer should of course be happy

programming in the chosen language.

In addition, there are good reasons for coding a compiler

for a language L in L itself. At first sight this may seem odd

or even impossible, but the advantages are significant.

Consider the scenario introduced in the previous section.

An implementation of L is required on machine M, but the

development of the compiler takes place on machine

because M has an inadequate or inappropriate development

environment. But suppose also that the aim of the project is

to transfer the compiler to M in due course so that the

development of software in L can continue on M with no

further need for machine . A good way of achieving this

aim is to follow these steps resulting in the bootstrapping of

the compiler:

1. On machine write a compiler translating L into M’s

machine code. Use language L for the implementation.

2. This compiler is just a program written in L. Use the

compiler just written on machine to compile the

source code of the compiler into M’s machine code. All

being well, this will be the last time machine will be

needed in this process.

3. Transfer this machine code to machine M and when this

code runs on M it will translate from L to M’s machine

code. It is, after all, a compiler for language L for

p g g

machine M.

4. A sensible test is to use this compiler on M to translate

the source code (in L) of the compiler to M’s machine

code and check that the generated code is the same as

that already running as the compiler on M.

This approach to compiler bootstrapping has been used

many times. There is considerable flexibility derived from

dividing the compiler into two or more parts and having a

simple and well-defined intermediate representation

interfacing the parts.

Variants of this scheme are possible. If an

implementation of L is required rapidly (maybe machine

is only available for a short time) then this implementation

plan can be modified. Assuming that the compiler has been

structured in the traditional way with a front-end and a

back-end communicating via a sensible intermediate

representation, it may be possible to follow these steps:

1. On machine develop a front-end for L, written in L,

generating an IR version of L programs. Maybe this is

already available as part of another implementation of

L.

2. On machine M develop an interpreter for the IR. This

can be written in any language available on M, even

assembly language if the IR is simple. This interpreter

allows programs coded in the IR to be run interpretively

on machine M.

3. On machine produce the IR version of the front-end

of the L compiler. This can be done by passing the

source code of the front-end “into itself” and it will

generate the IR version.

4. Transfer this IR version to machine M and it can be

“run” on the interpreter, yielding an interpretive L front-

end on machine M. This allows L programs to be run

interpretively on machine M. Machine is no longer

required.

5. If necessary, a code generator can then be written on

machine M, presumably in the language L, generating

M’s machine code from the IR. By running the compiler

interpretively, a M machine code version of the

complete compiler can be produced, finally yielding a

complete natively running compiler on machine M.

In this approach to implementation the IR has a special

role. In past chapters, we have seen how the IR is used as a

convenient interface between the front-end and the back-

end of the compiler and how it supports machine-

independent optimisation. Here, the IR plays a central role

in the implementation and specifically in the porting of a

compiler. In compiler projects where portability is a key

concern, the use of a small and simple IR makes the

development of an interpreter for the new target machine

straightforward.

9.1.3 Portability
A compiler can be made portable by writing it in a portable

fashion in a portable language. So, for example, a compiler

written in C for the language L running on machine

producing code can probably be ported to machine

without too much difficulty but it would, of course, still be

generating code for . Porting a compiler to a new machine

is usually taken to mean the retargeting of the compiler to

the new machine (i.e. making it generate code for the new

machine) as well as getting it to run on the new machine.

Making this process easy helps make the language L

portable too.

We have already seen how the use of the intermediate

representation can facilitate portability and also how

interpreting rather than code generating the IR can help. It

is also possible to use the same IR for multiple source

languages and multiple target machines. A range of

compiler front-ends can be developed for different source

languages, all generating the same IR. Various compiler

back-ends can be developed, each taking as input this

common IR but generating code for different machines. If

this kit of front-ends and back-ends handles n source

languages and m target machines, in effect complete

compilers have been developed at the cost of coding just

 “half compilers”. This is clearly a very attractive

proposition and forms the basis of many portable compiler

systems. One of the earliest practical examples was the

Amsterdam Compiler Kit, using a stack-based intermediate

code called EM, generated by the front-ends, which was

optimised and then passed on to one of a range of target

code-generating back-ends [2]. The GNU Compiler

Collection is another example where multiple front-ends

generate RTL (Register Transfer Language) and multiple

back-ends generate target code from the RTL [3]. The LLVM

Compiler Infrastructure project also has multiple front-ends

and back-ends interfaced via a common intermediate

representation [4].

The idea of a common intermediate language for

compilers was proposed in the early days of computing [5].

The design of the IR has always been a central concern in

the development of compilers. The need for a simple IR to

support compiler portability sometimes conflicts with the

requirements of an IR to support optimisation and effective

code generation. Therefore, there may be a case for two

distinct intermediate representations. For example, the

BCPL
compiler described in [6] uses INTCODE for

bootstrapping and OCODE as the interface between front-

end and back-end.

The details of the process of porting a compiler can

become quite complex because there are so many ways in

which it can be done. Many distinct steps may be involved

and systematic testing is particularly important. Ensuring

that “when the compiler compiles itself it produces itself” is

a good test, but it is certainly not a guarantee of

correctness.

9.2 Additional Software
The compiler is only a part of the programming language

implementation story. It is very likely that more software is

required to complete the implementation project.

Depending on the nature of the language being

implemented, as well as the target machine, some form of

runtime library will almost certainly be required so that the

running code from the compiler can communicate with the

operating system or in some systems, directly with the

hardware. For example, the C statement printf("Count =

%d\n",i) is translated by the C compiler into a function call

with two arguments, but the compiler does not need to be

concerned with the code of the printf function. The code

for all these support functions is contained in a library or

libraries, provided with the compiler implementation. It may

be possible to write at least part of this runtime library in a

high-level language, thus making it portable and

independent of the target machine. But it may be necessary

to implement some aspects in assembly language, making

those parts target machine-dependent.

Particularly when the target machine is a small,

embedded system, maybe running without a conventional

operating system, the executing program generated by the

compiler will probably need access to aspects of the bare

machine such as i/o ports, particular memory locations or

special machine instructions. Depending on the language

being used, these tasks may be done most easily via

function calls. A small and specialised runtime library will be

required here.

Code may also be required to perform tasks concerned

with the setting up of the execution environment, and this

can be placed conveniently in the runtime library. Memory

may need to be allocated (for example, for the runtime

stack), default i/o streams opened, error handling set up.

The modules making up the code of the target program will

probably be set up so that the entry point is the start of the

initialisation code in the runtime library, and once that has

executed, control is transferred to the main program in the

generated code.

The need for a runtime library implies that there has to

be some mechanism for linking separately compiled

modules together to produce a single executable binary file.

A program (the linker) has this role. It is usually part of the

“systems software” on the target machine and so it may be

of little direct concern to the compiler writer. The modules

produced by the compiler just have to be in a format

acceptable to the linker.

Debuggers are often provided to help the software

developer remove software
errors. A symbolic debugger

allows the programmer to access information about a

running program using the names that were used in the

source code. Variables can be examined and set,

breakpoints can be specified, the function call stack can be

examined and so on. Symbolic information has to be output

by the compiler and placed in the object files created by the

code generator. Standardised object file formats exist and

are widely used. Debuggers may have difficulty when

applied to optimised code. After the optimisation processes

have been performed by the compiler, there is no longer a

direct statement-by-statement or variable-by-variable

match between the source and object codes. Statements

can be reordered, modified or even removed and making

the debugger somehow reverse these transformations in

order to display useful information is a difficult problem [7–

9].

Code should be left in the compiler to enable

intermediate code representations, compiler data structures

and so on capable of being output if required. These may

help with the debugging of some difficult source program

issues and will certainly help with the debugging of the

compiler itself. The compiler can also include facilities for

the optional generation of runtime checking code such as

array bound checking. Features like this can save a great

deal of time in the software development process.

Program development environments combine various

utility programs such as
language-aware editors, debuggers,

code formatters, compilers, code cross-referencers, testing

frameworks and so on to form an easy to use, integrated

tool for constructing software.

Finally, the need for testing of the compiler cannot be

understated. This issue has been mentioned throughout the

text, referring particularly to the testing of individual

compiler components but it is vital that the whole compiler

is tested thoroughly too. The field of software engineering

gives good guidance on the development of a testing

strategy. A large, well-organised suite of test programs is

required, with and without errors, each having their

expected corresponding output and they are all used each

time a new version of the compiler is produced. The test

programs should include programs designed to test specific

aspects of the compiler and cover difficult aspects of the

language. These test suites are challenging and time

consuming to produce but it may be possible to make use of

existing test suites which have been made publicly

available. Making the compiler compile itself is a useful but

not a conclusive test for correctness. Testing is a complex

area but it cannot be avoided.

9.3 Particular Requirements
This book covers just the basic techniques of compiler

construction. These essential techniques are generally

applicable to most high-level languages but there will be

special approaches required for some implementations.

There are so many issues that could be considered here, but

only a few have been selected.

The development of code for embedded systems is an

important area, one where code optimisation may be vital.

The target machine may be very limited in functionality

(e.g. a small, simple processor with limited memory,

particularly in a consumer electronics device where cost is a

key factor). Optimisation may be concentrated on code

and/or data size (limited memory), on execution speed

(particularly to deal with real time constraints) or on power

consumption (battery-powered devices). For these

applications, it may not matter that the compiler takes

significantly longer to run in order to implement these

optimisations. The superoptimiser may have a role to play

here. It may be possible to compress the code and

uncompress it as it runs in order to save program memory

(at the cost of execution speed). Note that with most of

these embedded applications, cross-compilation is used.

Hosting the compiler on the embedded system itself makes

little sense.

Some high-level languages expect a particular

implementation plan. For example, some languages were

designed with an interpreted implementation in mind. Java

is a good case. The traditional implementation compiles the

Java source code into code for a virtual machine (the Java

Virtual Machine [10], where programs are written in Java

bytecodes) and a separate interpreter program reads this

virtual machine code, simulating its execution, hence

running the Java code. One of the important advantages

offered by this approach is that it allows the implementation

of dynamic class loading where a running program can call

for the execution of a different class which may reside on

the local machine or a remote machine somewhere on the

local network or on the internet. The remote class is loaded

in the form of a file containing code for the Java Virtual

Machine and its execution can start using the same

interpreter.

The disadvantage of this implementation strategy is of

course the execution efficiency overhead introduced by the

interpretation rather than the native running of the code.

Many techniques have been developed to improve the

efficiency. In particular, just-in-time compilation is now often

used to translate the Java bytecodes automatically into

target machine code, just before the code’s execution. If the

Java system encounters bytecodes that are likely to be

executed repeatedly, then it is important that the

translation to target machine code is done just once in

advance. Interpreting some of the code and running the rest

natively is possible. Such systems can offer considerable

performance gains.

9.4 The Future
In some respects programming language implementation

has been a remarkably stable field of computer science. The

theoretical foundations of grammars and parsing informed

the development of lexical and syntax analysers and today’s

implementations of these phases are very similar in

structure to those written decades ago. But target machines

and compiler back-ends as well as programming languages

have all changed a great deal. Developments in instruction

selection, control and data dependence representations,

optimisation, register allocation and so on have had a

significant effect and the huge changes in processor and

memory design, influenced by the needs of the compiler

writer, have all resulted in extremely efficient

implementations of powerful high-level languages.

Compiler development is driven primarily by advances in

programming languages and in computer hardware.

Changes in compilers tend to be incremental. Processor

speeds and capabilities will continue to increase and

compilers will have to adapt to the new functionality. In

order to continue following the spirit of Moore’s Law there

has to be an increased reliance on multiprocessor

architectures, and despite many years of research, we are

still not very good at the automatic parallelisation of

programs written in conventional programming languages.

Whether this situation is resolved by better parallelisation in

compilers or the development and adoption of easy to use

parallel programming languages is an interesting question.

Today’s programmers have been immersed in traditional

sequential programming for so long that it is difficult to see

how to move to thinking about the solution of problems in

terms of parallel algorithms.

There is no doubt that better programming languages are

needed to make the process of programming simpler and

more reliable. An important driver for compiler development

will undoubtedly be these developments in programming

languages. Software reliability is a crucial goal. As more and

more life-critical devices and computer applications are

being developed there has to be technology for the

production of reliable software. And reliable compilers are

needed too, of course, and this is an active research area.

Techniques of formal verification can be applied to compilers

and such compilers have special relevance when developing

code for high-integrity embedded systems [11].

Radically different computer architectures will evolve.

Recent advances in biologically inspired computing and

quantum computing suggest that major changes are on the

horizon. What about compilers for these machines? That

sounds like an interesting project....

9.5 Conclusions and Further Reading
The division of a compiler into a front-end and a back-end

has major effects on the ease of implementation of the

compiler on a new machine. The free availability today on

the internet of many compiler components has had a

significant influence on the ease with which new compilers

and other tools can be implemented. There are now

extremely reliable, powerful and highly optimising compilers

available in source code form, compiling a large variety of

source languages to diverse target architectures.

Many of these compilers form part of a compiler kit. They

are designed in such a way as to facilitate the addition of

new front-ends for new source languages and include

support for the porting to new target machines. They

usually include detailed documentation, specifically

including guidance on the addition of new front-end and

back-end components. The GCC [3] and LLVM [4] projects

are good examples and their porting documentation is

helpful reading. If the machine to which the compiler is to

be ported is similar to a machine that already has an

implementation, then the task may be comparatively easy.

There are many program development environments in

use throughout the software industry today. It is easy to find

information about them on the web and to do some sort of

feature comparison. They can make a big difference to the

ease of managing software projects.

Also, information about other compiler-related software

tools is easy to find. A valuable skill is an understanding of

object code formats and linkers [12]. Java also is a key

aspect of programming language implementation. It is itself

a good language for the implementation of compilers [13,

14]. Just- in-time compilers are not confined to Java

implementations. They have a long history [15].

Implementation of functional and object-oriented

languages has not been covered in this book. These are

huge subjects in themselves [16, 17]. And quantum

computing is a fast-moving subject. A web search will reveal

a great deal.

Exercises

9.1. Write interpreters in various languages for the

intermediate representation for DL.

9.2. A good choice of a compiler implementation language

is important. Try and find out which languages are and

have been popular for the coding of compilers and

make some conclusions.

9.3. Look at the LLVM and GCC documentation, particularly

the information about porting to a new machine.

Estimate how long it would take to produce a “quick

and dirty” code generator and how long it would take

for a high-quality optimising code generator.

9.4. Does the inclusion of pattern matching features make

a language better-suited for use in compiler

implementation? Discuss where in a compiler such

features would be useful.

9.5. What makes a C program non-portable? What makes

a Java program non-portable?

J p g p

9.6. How well is Java suited to the implementation of

applications on a small embedded processor?

9.7. The inevitable programming exercise: write a

complete compiler for DL targeted to any real or

virtual machine you like.

9.8. Make some predictions about what programming

languages and compiler technology will look like in

ten years time. Keep them somewhere safe.

References
1. German National Research Center for Information Technology (2016). The

catalog of compiler construction tools. http://​catalog.​compilertools.​net/​.
Accessed 20 Oct 2016

2. Tanenbaum AS, van Staveren H, Keizer EG, Stevenson JW (1983) A
practical tool kit for making portable compilers. Commun ACM 26(9):654–
660
[CrossRef]

3. Free Software Foundation (2016). GCC, the GNU compiler collection.
https://​gcc.​gnu.​org/​

4. Computer Science Department at the University of Illinois at Urbana-
Champaign (2016). The LLVM compiler infrastructure. http://​llvm.​org/​.
Accessed 26 Oct 2016

5. Conway ME (1958) A proposal for an UNCOL. Commun ACM 1(10):5–8
[CrossRef][MATH]

6. Richards M, Whitby-Strevens C (1980) BCPL – the language and its
compiler. Cambridge University Press, Cambridge
[MATH]

7. Brooks G, Hansen GJ, Simmons S (1992) A new approach to debugging
optimized code. Proceedings of the ACM SIGPLAN ’92 conference on
programming language design and implementation. California, San
Francisco, pp 1–11

http://catalog.compilertools.net/
http://dx.doi.org/10.1145/358172.358182
https://gcc.gnu.org/
http://llvm.org/
http://dx.doi.org/10.1145/368924.368928
http://www.emis.de/MATH-item?0084.12404
http://www.emis.de/MATH-item?0485.68009

8.
Hennessy J (1982) Symbolic debugging of optimized code. ACM Trans
Program Lang Syst 4(3):323–344
[CrossRef][MATH]

9. Hölzle U, Chambers C, Ungar D (1992) Debugging optimized code with
dynamic deoptimization. Proceedings of the ACM SIGPLAN ’92 conference
on programming language design and implementation. California, San
Francisco, pp 32–43

10. Lindholm T, Yellin F (1997) The Java virtual machine specification. The
Java series. Addison-Wesley, Reading

11. Leroy X (2016) INRIA. CompCert. http://​compcert.​inria.​fr/​index.​html.
Accessed 01 Dec 2016

12. Levine JR (2000) Linkers & loaders. Morgan Kaufmann, Massachusetts

13. Appel AW, Palsberg J (2002) Modern compiler implementation in Java, 2nd
edn. Cambridge University Press, Cambridge
[CrossRef]

14. Watt DA, Brown DF (2000) Programming language processors in Java.
Prentice Hall, Englewood Cliffs

15. Aycock J (2003) A brief history of just-in-time. ACM Comput Surv 35(2):97–
113
[CrossRef]

16. Craig I (2000) The interpretation of object-oriented programming
languages. Springer, Heidelberg
[CrossRef][MATH]

17. Peyton Jones SL (1987) The implementation of functional programming
languages. Prentice Hall International Series in Computer Science.
Prentice Hall, Englewood Cliffs

http://dx.doi.org/10.1145/357172.357173
http://www.emis.de/MATH-item?0484.68011
http://compcert.inria.fr/index.html
http://dx.doi.org/10.1017/CBO9780511811432
http://dx.doi.org/10.1145/857076.857077
http://dx.doi.org/10.1007/978-1-4471-3389-6
http://www.emis.de/MATH-item?0943.68023

Appendix A

The DL Language
This appendix
gives
a description of the DL language used

for many of the compiler examples in the book.

DL is a simple high-level language, only operating on

integer data, with a syntax looking vaguely like a simple C.

The syntax of DL is defined by the following BNF grammar:

Names have to be declared before they are used. This

implies that mutually recursive functions are not allowed. All

functions return a single integer result.

Comments (zero or more characters enclosed between

the standard C comment brackets
/*...*/
) can be

inserted. DL has rudimentary support for one-dimensional

arrays. The declaration
int a[3]
declares an array of three

elements, referenced as
a[0]
,
a[1]
and
a[2]
. Names are

scoped in the traditional way.

A simple program written in this language is as follows:

The tree generated for this program using the code

outlined in this book has two parts. The first is for the

factorial
function.

The second is for the main program.

The intermediate representation generated for this

program

is as follows.

Index

A
Abstraction

Abstract syntax tree

Addressing modes

ALGOL 60

ALGOL 68

Aliasing

Ambiguity

Amsterdam Compiler Kit

Analysis phase

Argument passing

call by reference

call by value

Arithmetic expressions

Arrays

bound checking

multi-dimensional

storage allocation

Assembler

Assembly languages

Associativity

Attribute grammars

Attributes

inherited

synthesised

Autoincrement, autodecrement

B
Back-end

Backtracking

Backus–Naur Form

Backus Normal Form

Basic blocks

BCPL

bison

BNF

recursion

specifying context

Boolean expressions

short-circuited evaluation

Bootstrapping

Bottom-up parsing

C
Cache memory

Canonical parse

Chomsky hierarchy

CISC

COBOL

Code generation

Code generator generation

Comments

Common subexpressions

comp.compilers

Compiler

Compiler phases

Conditional statements

Constant folding

Constant propagation

Context-free grammar

Context-sensitive grammar

Control flow graph

Cross-compilation

D
Data dependence graphs

Data flow

Dead registers

Debugger

Declarations

Dependence

antidependence

output dependence

true dependence

Derivation

canonical

leftmost

rightmost

DL

Dynamic chain

Dynamic class loading

Dynamic typing

E
EBNF

Efficiency

Embedded systems

Error correction

Error handling

Error synchronisation

Extended Backus–Naur Form

F
Factoring

Finite-state grammar

Finite-state machine

accepting state

deterministic

non-deterministic

starting state

FIRST and FOLLOW sets

flex

FORTRAN

Free grammar

Front-end

Functions

arguments

call and return implementation

implementation

G
GCC

GCD test

Global variables

GNU Compiler Collection

Grammar

ambiguity

attribute

context-free

context-sensitive

finite-state

free

LL(k)

LR(k)

production rules

regular

sentence

sentential form

starting symbol

unrestricted

Graph colouring

H
Handle

Hash table

I
Implementation strategies

implementation language

Induction variables

Inline assembly code

Instruction-level parallelism

Instruction scheduler

Instruction selection

Intermediate code

arithmetic expressions

boolean expressions

conditional statements

function arguments

functions

global variables

graph-based

linear

local variables

Interpreter

J
Java Virtual Machine

JavaCC

Just-in-time compilation

JVM

K
Keywords

L
Language definition

Left context

Left recursion

lex

Lexical analysis

error recovery

Lexical tokens

character constants

comments

identifiers

keywords

numerical constants

reserved words

string constants

white space

Library

Linkage information

Linker

lint

Live range

Live variable analysis

LL(k) grammar

LLVM

Load/store architecture

Local variables

Lookahead

Loop optimisation

Loop unrolling

Loop-invariant code

Loosely coupled systems

LR(k) grammar

M
Machine code

Machine-dependent optimisation

Machine-independent optimisation

Memory hierarchy

Metalanguage

BNF

EBNF

metasymbol

Multicore processors

N
Non-local optimisation

Non-terminal symbols

Numerical calculator

O
Old stack pointer

Operator overloading

Operator precedence

Optimisation

machine-dependent

machine-independent

P
Panic-mode error recovery

Parallelism

Parse tree

flattening

Parsing

bottom-up

deterministic

precedence

predictive

recursive descent

shift-reduce

top–down

top-down

Pascal

Peephole optimisation

Pipeline

PL/I

Portability

Precedence

Precedence parsing

Predictive parser

Production rules

Program dependence graph

Program development environment

R
Recursive descent parser

Reduce/reduce conflict

Reduced instruction set computers

Reduction

Redundant code elimination

Redundant variables

Register allocation

Register interference graph

Register-memory machines

Register-register machines

Register spilling

Regular expression

directed graph

Regular grammar

Reserved words

Return address

RISC

Runtime library

S
Scope rules

Semantic analysis

Semantics

definition

natural language

reference implementation

specification

Sentence

Sentential form

Shift/reduce conflict

Shift-reduce parsing

Software engineering

Stack-based storage

Stack frame

Stack-based storage

Starting symbol

Static chain

Static single assignment form (SSA)

Static typing

Storage allocation

arrays

display

dynamic allocation

nested functions

stack

static allocation

static chain

structures and unions

Storage management

Strength reduction

Superoptimisation

Superscalar processors

Symbol table

stack

Syntax

definition

Syntax analysis

error recovery

Syntax diagrams

Syntax-directed translation

Synthesis phase

T
T-diagrams

Terminal symbols

Testing

Three-address code

Tokens

Top-down parsing

Transition diagram

Transition table

Tree generation

Tree pattern matching

Tree printing

Tree tiling

Two-level grammar

Type checking

Typedef declaration

Type equivalence

name equivalence

structural equivalence

Types

U
Unrestricted grammar

User-defined types

V
Vector instructions

Virtual machine

Virtual registers

Y
yacc

	Frontmatter
	1. Introduction
	2. Compilers and Interpreters
	3. Lexical Analysis
	4. Approaches to Syntax Analysis
	5. Practicalities of Syntax Analysis
	6. Semantic Analysis and Intermediate Code
	7. Optimisation
	8. Code Generation
	9. Implementation Issues
	Backmatter

